

 Navigation

 	
 index

 	
 modules |

 	gevent-socketio 0.3.1 documentation

Gevent-socketio documentation

Introduction

Socket.IO is a WebSocket-like abstraction that enables real-time
communication between a browser and a server. gevent-socketio is a
Python implementation of the protocol.

The reference server implementation of Socket.IO runs on Node.js and was
developed by LearnBoost. There are now server implementations in a
variety of languages.

One aim of this project is to provide a single gevent-based
API that works across the different WSGI-based web frameworks out
there (Pyramid, Pylons, Flask, web2py, Django, etc...). Only ~3 lines
of code are required to tie-in gevent-socketio in your framework.
Note: you need to use the gevent python WSGI server to use
gevent-socketio.

Namespaces: since you mostly have one websocket/socket.io
endpoint per website, it is important to be able to namespace the
different real-time activities of the different pages or parts of
your site, just like you need routes to map URLs to different parts
of your code. The Socket.IO 0.7+ namespaces are a welcome addition,
and if you don’t use Socket.IO, you’ll probably end-up writing your
own namespacing mechanism at some point.

Named events: To distinguish the messages that are coming and
going, you most probably want to give them some name. Here again, not
using Socket.IO, you will find yourself implementing a way to tag your
packets with names representing different tasks or actions to
perform. With Socket.IO 0.6 or with normal WebSockets, you would
probably encode a JSON object with one of the keys that is reserved
for that (I used {"type": "submit_something"}. Socket.IO 0.7+
implements named events, which put that information in a terse form on
the wire. It also allows you to define callbacks, that can be
acknowledged by the other endpoint, and then fire back your function
with some return parameters. Something great for RPC, that you’d need
to implement yourself the moment you need it.

Transports: One of the main feature of Socket.IO is the
abstraction of the transport, that gives you real-time web support
down to Internet Explorer 6.0, using long-polling methods. It will
also use native WebSockets when available to the browser, for even
lower latencies. Currently supported transports: websocket,
flashsocket, htmlfile, xhr-multipart, xhr-polling,
jsonp-polling.

This implementation covers nearly all the features of the Socket.IO
0.7+ (up to at least 0.9.1) protocol, with events, callbacks. It adds
security in a pythonic way with granular ACLs (which don’t exist in
the Node.js version) at the method level. The project has several
examples in the source code and in the documentation. Any addition
and fixes to the docs are warmly welcomed.

Concepts

In order to understand the following documentation articles, let’s
clarify some of the terms used:

A Namespace is like a controller in the MVC world. It encompasses
a set of methods that are logically in it. For example, the
send_private_message event would be in the /chat namespace, as
well as the kick_ban event. Whereas the scan_files event
would be in the /filesystem namespace. Each namespace is
represented by a sub-class of BaseNamespace. A simple
example would be, on the client side (the browser):

var socket = io.connect("/chat");

having loaded the socket.io.js library somewhere in your <head>.
On the server (this is a Pyramid example, but its pretty much the same
for other frameworks):

from socketio.namespace import BaseNamespace

class ChatNamespace(BaseNamespace):
 def on_chat(self, msg):
 self.emit('chat', msg)

def socketio_service(request):
 socketio_manage(request.environ, {'/chat': ChatNamespace},
 request)
 return "out"

Here we use socketio.socketio_manage() to start the Socket.IO
machine, and handle the real-time communication.

You will come across the notion of a Socket. This is a virtual
socket, that abstracts the fact that some transports are long-polling
and others are stateful (like a Websocket), and exposes the same
functionality for all. You can have many namespaces inside a Socket,
each delimited by their name like /chat, /filesystem or
/foobar. Note also that there is a global namespace, identified
by an empty string. Some times, the global namespace has special
features, for backwards compatibilty reasons (we only have a global
namespace in version 0.6 of the protocol). For example, disconnecting
the global namespace means disconnect the full socket. Disconnecting
a qualified namespace, on the other hand, only removes access to that
namespace.

The Socket is responsible from taking the packets, which are, in
the realm of a Namespace or a Socket object, a dictionary that
looks like:

{"type": "event",
 "name": "launch_superhero",
 "args": ["Superman", 123, "km", {"hair_color": "brown"}]}

These packets are serialized in a compact form when its time to put
them on the wire. Socket.IO also has some optimizations if we need to
send many packets on some long-polling transports.

At this point, if you don’t know gevent, you probably will want to
learn a bit more about it, since it is the base you will be working
on:

http://www.gevent.org/

Getting started

Until we have a fully-fledged tutorial, please check out our example
applications and the API documentation.

You can see a video that shows gevent-socketio in a live coding
presentation here:

http://pyvideo.org/video/1573/gevent-socketio-cross-framework-real-time-web-li

To learn how to build your Namespace (the object dealing with requests and replies), see:

socketio.namespace

See this doc for different servers integration:

Server integration layers

Examples

The gevent-socketio repository holds several examples:

https://github.com/abourget/gevent-socketio/tree/master/examples

	simple_chat is a bare-bone WSGI app with a minimal socketio integration

	simple_pyramid_chat is a simple chat application built on Pyramid

	live_cpu_graph is a simple realtime CPU graph (linux only)

	twitter_stream is a streaming feed of twitter updates

	pyramid_backbone_redis_chat is a Pyramid app using backbone.js and redis for pubsub

	pyramid_backbone_redis_chat_persistence is a Pyramid app using backbone.js, redis for pubsub and features persistence

	testapp is the app we use to test the different features, so there are a couple of more advanced use-cases demonstrated there

pyvore is an application that was developed to serve as real-time
chat in conferences like the PyCon:

https://github.com/sontek/pyvore

This app is a Django tic-tac-toe application that uses the latest
gevent-socketio:

https://github.com/sontek/django-tictactoe

Security

gevent-socketio provides method-level security, using an ACL
model. You can read more about it in the socketio.namespace, but
a basic example to secure one namespace would look like:

class AdminInterface(BaseNamespace):
 def get_initial_acl(self):
 """Everything is locked at first"""
 return []

 def initialize(self):
 # This here assumes you have passed in a `request`
 # to your socketio_manage() call, it has that
 # `is_admin` attribute
 if not request.is_admin:
 return
 else:
 self.lift_acl_restrictions()

 def on_blahblahblah(self, data):
 """This can't be access until `lift_acl_restrictions()` has
 been called

 """
 pass

API docs

API documentation is where most of the juice/meat is. Read through
and you’ll (hopefully) understand everything you need about
gevent-socketio.

The manager is the function you call from your framework. It is in:

socketio

Namespaces are the main interface the developer is going to use.
You mostly define your own BaseNamespace derivatives, and
gevent-socketio maps the incoming messages to your methods
automatically:

socketio.namespace

Mixins are components you can add to your namespaces, to provided
added functionality.

socketio.mixins

Sockets are the virtual tunnels that are established and
abstracted by the different Transports. They basically expose
socket-like send/receive functionality to the Namespace objects. Even
when we use long-polling transports, only one Socket is created per
browser.

socketio.virtsocket

Packet is a library that handle the decoding of the messages
encoded in the Socket.IO dialect. They take dictionaries for
encoding, and return decoded dictionaries also.

socketio.packet

Handler is a lower-level transports handler. It is responsible
for calling your WSGI application

socketio.handler

Transports are responsible for translating the different fallback
mechanisms to one abstracted Socket, dealing with payload encoding,
multi-message multiplexing and their reverse operation.

socketio.transports

Server is the component used to hook Gevent and its WSGI server to
the WSGI app to be served, while dispatching any Socket.IO related
activities to the handler and the transports.

socketio.server

Auto-generated indexes:

	Index

	Module Index

References

LearnBoost’s node.js version is the reference implementation, you can
find the server component at this address:

https://github.com/learnboost/socket.io

The client JavaScript library’s development branch is here:

https://github.com/LearnBoost/socket.io-client

The specifications to the protocol are somehow in this repository:

https://github.com/LearnBoost/socket.io-spec

This is the original wow-website:

http://socket.io

Here is a list of the different frameworks integration to date,
although not all have upgraded to the latest version of
gevent-socketio:

	pyramid_socketio: https://github.com/abourget/pyramid_socketio

	django-socketio: https://github.com/stephenmcd/django-socketio

The Flask guys will be working on an integration layer soon.

Contacts

For any questions, you can use the Issue tracking at Github:

https://github.com/abourget/gevent-socketio
https://github.com/abourget/gevent-socketio/issues

The mailing list:

https://groups.google.com/forum/#!forum/gevent-socketio

The maintainers:

https://twitter.com/bourgetalexndre
https://twitter.com/sontek

Credits

Jeffrey Gellens for starting and polishing this project over the years.

PyCon 2012 and the Sprints, for bringing this project up to version
0.9 of the protocol.

Current maintainers:

	Alexandre Bourget

	John Anderson

Contributors:

	Denis Bilenko

	Bobby Powers

	Lon Ingram

	Eugene Baumstein

	Sébastien Béal

	jpellerin (JP)

	Philip Neustrom

	Jonas Obrist

	fabiodive

	Dan O’Neill

	Whit Morriss

	Chakib (spike) Benziane

	Vivek Venugopalan

	Vladimir Protasov

	Bruno Bigras

	Gabriel de Labacheliere

	Flavio Curella

	thapar

	Marconi Moreto

	sv1jsb

	Cliff Xuan

	Matt Billenstein

	Rolo

	Anthony Oliver

	Pierre Giraud

	m0sth8

	Daniel Swarbrick

TODO

How to integrate your framework’s “session” object (Beaker, memcached, or file-based). Beware: this can be tricky. You need to manage that yourself.

 Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	gevent-socketio 0.3.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 socketio	

 	
 	
 socketio.handler	

 	
 	
 socketio.mixins	

 	
 	
 socketio.namespace	

 	
 	
 socketio.packet	

 	
 	
 socketio.server	

 	
 	
 socketio.transports	

 	
 	
 socketio.virtsocket	

 Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	gevent-socketio 0.3.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | N
 | O
 | P
 | R
 | S
 | W
 | X

_

 	

 	__init__() (socketio.server.SocketIOServer method)

A

 	

 	add_acl_method() (socketio.namespace.BaseNamespace method)

B

 	

 	BaseNamespace (class in socketio.namespace)

 	

 	BaseTransport (class in socketio.transports)

C

 	

 	call_method() (socketio.namespace.BaseNamespace method)

 	call_method_with_acl() (socketio.namespace.BaseNamespace method)

 	

 	connected (socketio.virtsocket.Socket attribute)

D

 	

 	decode() (in module socketio.packet)

 	decode_payload() (socketio.transports.XHRPollingTransport method)

 	default_error_handler() (in module socketio.virtsocket)

 	del_acl_method() (socketio.namespace.BaseNamespace method)

 	

 	detach() (socketio.virtsocket.Socket method)

 	disconnect() (socketio.namespace.BaseNamespace method)

 	

 	(socketio.virtsocket.Socket method)

 	do_exchange() (socketio.transports.HTMLFileTransport method)

 	

 	(socketio.transports.WebsocketTransport method)

 	(socketio.transports.XHRMultipartTransport method)

 	(socketio.transports.XHRPollingTransport method)

E

 	

 	emit() (socketio.namespace.BaseNamespace method)

 	encode() (in module socketio.packet)

 	encode_payload() (socketio.transports.XHRPollingTransport method)

 	

 	environ (socketio.namespace.BaseNamespace attribute)

 	error() (socketio.namespace.BaseNamespace method)

 	

 	(socketio.virtsocket.Socket method)

 	exception_handler_decorator() (socketio.namespace.BaseNamespace method)

F

 	

 	FlashSocketTransport (class in socketio.transports)

G

 	

 	get() (socketio.transports.HTMLFileTransport method)

 	

 	(socketio.transports.XHRMultipartTransport method)

 	(socketio.transports.XHRPollingTransport method)

 	get_client_msg() (socketio.virtsocket.Socket method)

 	get_initial_acl() (socketio.namespace.BaseNamespace method)

 	get_messages_payload() (socketio.transports.XHRPollingTransport method)

 	

 	get_multiple_client_msgs() (socketio.virtsocket.Socket method)

 	get_server_msg() (socketio.virtsocket.Socket method)

 	get_socket() (socketio.server.SocketIOServer method)

 	GLOBAL_NS (socketio.virtsocket.Socket attribute)

H

 	

 	handle() (socketio.server.SocketIOServer method)

 	handle_bad_request() (socketio.handler.SocketIOHandler method)

 	handle_disconnect_request() (socketio.handler.SocketIOHandler method)

 	handle_one_response() (socketio.handler.SocketIOHandler method)

 	

 	handler_types (socketio.handler.SocketIOHandler attribute)

 	heartbeat() (socketio.virtsocket.Socket method)

 	HTMLFileTransport (class in socketio.transports)

I

 	

 	incr_hits() (socketio.virtsocket.Socket method)

 	

 	initialize() (socketio.namespace.BaseNamespace method)

J

 	

 	json_dumps() (socketio.virtsocket.Socket static method)

 	json_loads() (socketio.virtsocket.Socket static method)

 	

 	JSONPolling (class in socketio.transports)

K

 	

 	kill() (socketio.virtsocket.Socket method)

 	

 	kill_local_jobs() (socketio.namespace.BaseNamespace method)

L

 	

 	lift_acl_restrictions() (socketio.namespace.BaseNamespace method)

N

 	

 	ns_name (socketio.namespace.BaseNamespace attribute)

O

 	

 	options() (socketio.transports.XHRPollingTransport method)

P

 	

 	post() (socketio.transports.XHRPollingTransport method)

 	process_event() (socketio.namespace.BaseNamespace method)

 	process_packet() (socketio.namespace.BaseNamespace method)

 	

 	put_client_msg() (socketio.virtsocket.Socket method)

 	put_server_msg() (socketio.virtsocket.Socket method)

R

 	

 	RE_DISCONNECT_URL (socketio.handler.SocketIOHandler attribute)

 	RE_HANDSHAKE_URL (socketio.handler.SocketIOHandler attribute)

 	RE_REQUEST_URL (socketio.handler.SocketIOHandler attribute)

 	recv_connect() (socketio.namespace.BaseNamespace method)

 	recv_disconnect() (socketio.namespace.BaseNamespace method)

 	recv_error() (socketio.namespace.BaseNamespace method)

 	

 	recv_json() (socketio.namespace.BaseNamespace method)

 	recv_message() (socketio.namespace.BaseNamespace method)

 	remove_namespace() (socketio.virtsocket.Socket method)

 	request (socketio.namespace.BaseNamespace attribute)

 	reset_acl() (socketio.namespace.BaseNamespace method)

S

 	

 	send() (socketio.namespace.BaseNamespace method)

 	send_packet() (socketio.virtsocket.Socket method)

 	session (socketio.namespace.BaseNamespace attribute)

 	Socket (class in socketio.virtsocket)

 	socket (socketio.namespace.BaseNamespace attribute)

 	socketio (module)

 	socketio.handler (module)

 	socketio.mixins (module)

 	socketio.namespace (module)

 	socketio.packet (module)

 	socketio.server (module)

 	socketio.transports (module)

 	

 	socketio.virtsocket (module)

 	socketio_manage() (in module socketio)

 	SocketIOHandler (class in socketio.handler)

 	SocketIOServer (class in socketio.server)

 	spawn() (socketio.namespace.BaseNamespace method)

 	

 	(socketio.virtsocket.Socket method)

 	start_accepting() (socketio.server.SocketIOServer method)

 	start_response() (socketio.transports.BaseTransport method)

 	STATE_CONNECTED (socketio.virtsocket.Socket attribute)

 	STATE_CONNECTING (socketio.virtsocket.Socket attribute)

 	STATE_DISCONNECTED (socketio.virtsocket.Socket attribute)

 	STATE_DISCONNECTING (socketio.virtsocket.Socket attribute)

 	stop() (socketio.server.SocketIOServer method)

W

 	

 	WebsocketTransport (class in socketio.transports)

 	write() (socketio.transports.BaseTransport method)

 	

 	(socketio.transports.HTMLFileTransport method)

 	(socketio.transports.JSONPolling method)

 	write_jsonp_result() (socketio.handler.SocketIOHandler method)

 	

 	write_packed() (socketio.transports.HTMLFileTransport method)

 	write_plain_result() (socketio.handler.SocketIOHandler method)

 	write_smart() (socketio.handler.SocketIOHandler method)

X

 	

 	XHRMultipartTransport (class in socketio.transports)

 	

 	XHRPollingTransport (class in socketio.transports)

 Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/comment-bright.png

_static/down-pressed.png

handler.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.handler

This is a lower-level transports handler. It is responsible for calling your WSGI application.

		
class socketio.handler.SocketIOHandler(config, *args, **kwargs)[source]

		Bases: gevent.pywsgi.WSGIHandler

		
RE_DISCONNECT_URL = <_sre.SRE_Pattern object at 0x7f13b5a92030>

		

		
RE_HANDSHAKE_URL = <_sre.SRE_Pattern object at 0x7f13b5add990>

		

		
RE_REQUEST_URL = <_sre.SRE_Pattern object at 0x7f13b5da4bb8>

		

		
handle_bad_request()[source]

		

		
handle_disconnect_request()[source]

		

		
handle_one_response()[source]

		This function deals with ONE INCOMING REQUEST from the web.

It will wire and exchange message to the queues for long-polling
methods, otherwise, will stay alive for websockets.

		
handler_types = {'websocket': <class 'socketio.transports.WebsocketTransport'>, 'xhr-multipart': <class 'socketio.transports.XHRMultipartTransport'>, 'htmlfile': <class 'socketio.transports.HTMLFileTransport'>, 'jsonp-polling': <class 'socketio.transports.JSONPolling'>, 'flashsocket': <class 'socketio.transports.FlashSocketTransport'>, 'xhr-polling': <class 'socketio.transports.XHRPollingTransport'>}

		

		
write_jsonp_result(data, wrapper='0')[source]

		

		
write_plain_result(data)[source]

		

		
write_smart(data)[source]

		

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_static/down.png

mixins.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.mixins

These are general-purpose Mixins – for use with Namespaces – that are
generally useful for most simple projects, e.g. Rooms, Broadcast.

You’ll likely want to create your own Mixins.

class BroadcastMixin(object):
 """Mix in this class with your Namespace to have a broadcast event method.

 Use it like this:
 class MyNamespace(BaseNamespace, BroadcastMixin):
 def on_chatmsg(self, event):
 self.broadcast_event('chatmsg', event)
 """
 def broadcast_event(self, event, *args):
 """
 This is sent to all in the sockets in this particular Namespace,
 including itself.
 """
 pkt = dict(type="event",
 name=event,
 args=args,
 endpoint=self.ns_name)

 for sessid, socket in self.socket.server.sockets.iteritems():
 socket.send_packet(pkt)

 def broadcast_event_not_me(self, event, *args):
 """
 This is sent to all in the sockets in this particular Namespace,
 except itself.
 """
 pkt = dict(type="event",
 name=event,
 args=args,
 endpoint=self.ns_name)

 for sessid, socket in self.socket.server.sockets.iteritems():
 if socket is not self.socket:
 socket.send_packet(pkt)

class RoomsMixin(object):
 def __init__(self, *args, **kwargs):
 super(RoomsMixin, self).__init__(*args, **kwargs)
 if 'rooms' not in self.session:
 self.session['rooms'] = set() # a set of simple strings

 def join(self, room):
 """Lets a user join a room on a specific Namespace."""
 self.session['rooms'].add(self._get_room_name(room))

 def leave(self, room):
 """Lets a user leave a room on a specific Namespace."""
 self.session['rooms'].remove(self._get_room_name(room))

 def _get_room_name(self, room):
 return self.ns_name + '_' + room

 def emit_to_room(self, room, event, *args):
 """This is sent to all in the room (in this particular Namespace)"""
 pkt = dict(type="event",
 name=event,
 args=args,
 endpoint=self.ns_name)
 room_name = self._get_room_name(room)
 for sessid, socket in self.socket.server.sockets.iteritems():
 if 'rooms' not in socket.session:
 continue
 if room_name in socket.session['rooms'] and self.socket != socket:
 socket.send_packet(pkt)

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_static/file.png

transports.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.transports

This is largely an internal module, responsible for translating the
different fallback mechanisms to one abstracted Socket, dealing with
payload encoding, multi-message multiplexing and their reverse operation.

		
class socketio.transports.BaseTransport(handler, config, **kwargs)[source]

		Bases: object [http://docs.python.org/library/functions.html#object]

Base class for all transports. Mostly wraps handler class functions.

		
start_response(status, headers, **kwargs)[source]

		

		
write(data='')[source]

		

		
class socketio.transports.FlashSocketTransport(handler, config, **kwargs)[source]

		Bases: socketio.transports.WebsocketTransport

		
class socketio.transports.HTMLFileTransport(handler, config)[source]

		Bases: socketio.transports.XHRPollingTransport

Not tested at all!

		
do_exchange(socket, request_method)[source]

		

		
get(socket)[source]

		

		
write(data)[source]

		

		
write_packed(data)[source]

		

		
class socketio.transports.JSONPolling(handler, config)[source]

		Bases: socketio.transports.XHRPollingTransport

		
write(data)[source]

		Just quote out stuff before sending it out

		
class socketio.transports.WebsocketTransport(handler, config, **kwargs)[source]

		Bases: socketio.transports.BaseTransport

		
do_exchange(socket, request_method)[source]

		

		
class socketio.transports.XHRMultipartTransport(handler)[source]

		Bases: socketio.transports.XHRPollingTransport

		
do_exchange(socket, request_method)[source]

		

		
get(socket)[source]

		

		
class socketio.transports.XHRPollingTransport(*args, **kwargs)[source]

		Bases: socketio.transports.BaseTransport

		
decode_payload(payload)[source]

		This function can extract multiple messages from one HTTP payload.
Some times, the XHR/JSONP/.. transports can pack more than one message
on a single packet. They are encoding following the WebSocket
semantics, which need to be reproduced here to unwrap the messages.

The semantics are:

ufffd + [length as a string] + ufffd + [payload as a unicode string]

This function returns a list of messages, even though there is only
one.

Inspired by socket.io/lib/transports/http.js

		
do_exchange(socket, request_method)[source]

		

		
encode_payload(messages)[source]

		Encode list of messages. Expects messages to be unicode.

messages - List of raw messages to encode, if necessary

		
get(socket)[source]

		

		
get_messages_payload(socket, timeout=None)[source]

		This will fetch the messages from the Socket’s queue, and if
there are many messes, pack multiple messages in one payload and return

		
options()[source]

		

		
post(socket)[source]

		

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_modules/socketio/packet.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.packet

from socketio.defaultjson import default_json_dumps, default_json_loads

MSG_TYPES = {
 'disconnect': 0,
 'connect': 1,
 'heartbeat': 2,
 'message': 3,
 'json': 4,
 'event': 5,
 'ack': 6,
 'error': 7,
 'noop': 8,
 }

MSG_VALUES = dict((v, k) for k, v in MSG_TYPES.iteritems())

ERROR_REASONS = {
 'transport not supported': 0,
 'client not handshaken': 1,
 'unauthorized': 2
 }

REASONS_VALUES = dict((v, k) for k, v in ERROR_REASONS.iteritems())

ERROR_ADVICES = {
 'reconnect': 0,
 }

ADVICES_VALUES = dict((v, k) for k, v in ERROR_ADVICES.iteritems())

socketio_packet_attributes = ['type', 'name', 'data', 'endpoint', 'args',
 'ackId', 'reason', 'advice', 'qs', 'id']

[docs]def encode(data, json_dumps=default_json_dumps):
 """
 Encode an attribute dict into a byte string.
 """
 payload = ''
 msg = str(MSG_TYPES[data['type']])

 if msg in ['0', '1']:
 # '1::' [path] [query]
 msg += '::' + data['endpoint']
 if 'qs' in data and data['qs'] != '':
 msg += ':' + data['qs']

 elif msg == '2':
 # heartbeat
 msg += '::'

 elif msg in ['3', '4', '5']:
 # '3:' [id ('+')] ':' [endpoint] ':' [data]
 # '4:' [id ('+')] ':' [endpoint] ':' [json]
 # '5:' [id ('+')] ':' [endpoint] ':' [json encoded event]
 # The message id is an incremental integer, required for ACKs.
 # If the message id is followed by a +, the ACK is not handled by
 # socket.io, but by the user instead.
 if msg == '3':
 payload = data['data']
 if msg == '4':
 payload = json_dumps(data['data'])
 if msg == '5':
 d = {}
 d['name'] = data['name']
 if 'args' in data and data['args'] != []:
 d['args'] = data['args']
 payload = json_dumps(d)
 if 'id' in data:
 msg += ':' + str(data['id'])
 if data['ack'] == 'data':
 msg += '+'
 msg += ':'
 else:
 msg += '::'
 if 'endpoint' not in data:
 data['endpoint'] = ''
 if payload != '':
 msg += data['endpoint'] + ':' + payload
 else:
 msg += data['endpoint']

 elif msg == '6':
 # '6:::' [id] '+' [data]
 msg += '::' + data.get('endpoint', '') + ':' + str(data['ackId'])
 if 'args' in data and data['args'] != []:
 msg += '+' + json_dumps(data['args'])

 elif msg == '7':
 # '7::' [endpoint] ':' [reason] '+' [advice]
 msg += ':::'
 if 'reason' in data and data['reason'] != '':
 msg += str(ERROR_REASONS[data['reason']])
 if 'advice' in data and data['advice'] != '':
 msg += '+' + str(ERROR_ADVICES[data['advice']])
 msg += data['endpoint']

 # NoOp, used to close a poll after the polling duration time
 elif msg == '8':
 msg += '::'

 return msg

[docs]def decode(rawstr, json_loads=default_json_loads):
 """
 Decode a rawstr packet arriving from the socket into a dict.
 """
 decoded_msg = {}
 split_data = rawstr.split(":", 3)
 msg_type = split_data[0]
 msg_id = split_data[1]
 endpoint = split_data[2]

 data = ''

 if msg_id != '':
 if "+" in msg_id:
 msg_id = msg_id.split('+')[0]
 decoded_msg['id'] = int(msg_id)
 decoded_msg['ack'] = 'data'
 else:
 decoded_msg['id'] = int(msg_id)
 decoded_msg['ack'] = True

 # common to every message
 msg_type_id = int(msg_type)
 if msg_type_id in MSG_VALUES:
 decoded_msg['type'] = MSG_VALUES[int(msg_type)]
 else:
 raise Exception("Unknown message type: %s" % msg_type)

 decoded_msg['endpoint'] = endpoint

 if len(split_data) > 3:
 data = split_data[3]

 if msg_type == "0": # disconnect
 pass

 elif msg_type == "1": # connect
 decoded_msg['qs'] = data

 elif msg_type == "2": # heartbeat
 pass

 elif msg_type == "3": # message
 decoded_msg['data'] = data

 elif msg_type == "4": # json msg
 decoded_msg['data'] = json_loads(data)

 elif msg_type == "5": # event
 try:
 data = json_loads(data)
 except ValueError, e:
 print("Invalid JSON event message", data)
 decoded_msg['args'] = []
 else:
 decoded_msg['name'] = data.pop('name')
 if 'args' in data:
 decoded_msg['args'] = data['args']
 else:
 decoded_msg['args'] = []

 elif msg_type == "6": # ack
 if '+' in data:
 ackId, data = data.split('+')
 decoded_msg['ackId'] = int(ackId)
 decoded_msg['args'] = json_loads(data)
 else:
 decoded_msg['ackId'] = int(data)
 decoded_msg['args'] = []

 elif msg_type == "7": # error
 if '+' in data:
 reason, advice = data.split('+')
 decoded_msg['reason'] = REASONS_VALUES[int(reason)]
 decoded_msg['advice'] = ADVICES_VALUES[int(advice)]
 else:
 decoded_msg['advice'] = ''
 if data != '':
 decoded_msg['reason'] = REASONS_VALUES[int(data)]
 else:
 decoded_msg['reason'] = ''
 elif msg_type == "8": # noop
 pass

 return decoded_msg

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio/server.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.server

import sys
import traceback

from socket import error

from gevent.pywsgi import WSGIServer

from socketio.handler import SocketIOHandler
from socketio.policyserver import FlashPolicyServer
from socketio.virtsocket import Socket
from geventwebsocket.handler import WebSocketHandler

__all__ = ['SocketIOServer']

[docs]class SocketIOServer(WSGIServer):
 """A WSGI Server with a resource that acts like an SocketIO."""

[docs] def __init__(self, *args, **kwargs):
 """This is just like the standard WSGIServer __init__, except with a
 few additional ``kwargs``:

 :param resource: The URL which has to be identified as a
 socket.io request. Defaults to the /socket.io/ URL.

 :param transports: Optional list of transports to allow. List of
 strings, each string should be one of
 handler.SocketIOHandler.handler_types.

 :param policy_server: Boolean describing whether or not to use the
 Flash policy server. Default True.

 :param policy_listener: A tuple containing (host, port) for the
 policy server. This is optional and used only if policy server
 is set to true. The default value is 0.0.0.0:843

 :param heartbeat_interval: int The timeout for the server, we
 should receive a heartbeat from the client within this
 interval. This should be less than the
 ``heartbeat_timeout``.

 :param heartbeat_timeout: int The timeout for the client when
 it should send a new heartbeat to the server. This value
 is sent to the client after a successful handshake.

 :param close_timeout: int The timeout for the client, when it
 closes the connection it still X amounts of seconds to do
 re open of the connection. This value is sent to the
 client after a successful handshake.

 :param log_file: str The file in which you want the PyWSGI
 server to write its access log. If not specified, it
 is sent to `stderr` (with gevent 0.13).

 """
 self.sockets = {}
 if 'namespace' in kwargs:
 print("DEPRECATION WARNING: use resource instead of namespace")
 self.resource = kwargs.pop('namespace', 'socket.io')
 else:
 self.resource = kwargs.pop('resource', 'socket.io')

 self.transports = kwargs.pop('transports', None)

 if kwargs.pop('policy_server', True):
 try:
 address = args[0][0]
 except TypeError:
 try:
 address = args[0].address[0]
 except AttributeError:
 address = args[0].cfg_addr[0]
 policylistener = kwargs.pop('policy_listener', (address, 10843))
 self.policy_server = FlashPolicyServer(policylistener)
 else:
 self.policy_server = None

 # Extract other config options
 self.config = {
 'heartbeat_timeout': 60,
 'close_timeout': 60,
 'heartbeat_interval': 25,
 }
 for f in ('heartbeat_timeout', 'heartbeat_interval', 'close_timeout'):
 if f in kwargs:
 self.config[f] = int(kwargs.pop(f))

 if not 'handler_class' in kwargs:
 kwargs['handler_class'] = SocketIOHandler

 if not 'ws_handler_class' in kwargs:
 self.ws_handler_class = WebSocketHandler
 else:
 self.ws_handler_class = kwargs.pop('ws_handler_class')

 log_file = kwargs.pop('log_file', None)
 if log_file:
 kwargs['log'] = open(log_file, 'a')

 super(SocketIOServer, self).__init__(*args, **kwargs)

[docs] def start_accepting(self):
 if self.policy_server is not None:
 try:
 if not self.policy_server.started:
 self.policy_server.start()
 except error, ex:
 sys.stderr.write(
 'FAILED to start flash policy server: %s\n' % (ex,))
 except Exception:
 traceback.print_exc()
 sys.stderr.write('FAILED to start flash policy server.\n\n')
 super(SocketIOServer, self).start_accepting()

[docs] def stop(self, timeout=None):
 if self.policy_server is not None:
 self.policy_server.stop()
 super(SocketIOServer, self).stop(timeout=timeout)

[docs] def handle(self, socket, address):
 # Pass in the config about timeouts, heartbeats, also...
 handler = self.handler_class(self.config, socket, address, self)
 handler.handle()

[docs] def get_socket(self, sessid=''):
 """Return an existing or new client Socket."""

 socket = self.sockets.get(sessid)

 if sessid and not socket:
 return None # you ask for a session that doesn't exist!
 if socket is None:
 socket = Socket(self, self.config)
 self.sockets[socket.sessid] = socket
 else:
 socket.incr_hits()

 return socket

def serve(app, **kw):
 _quiet = kw.pop('_quiet', False)
 _resource = kw.pop('resource', 'socket.io')
 if not _quiet: # pragma: no cover
 # idempotent if logging has already been set up
 import logging
 logging.basicConfig()

 host = kw.pop('host', '127.0.0.1')
 port = int(kw.pop('port', 6543))

 transports = kw.pop('transports', None)
 if transports:
 transports = [x.strip() for x in transports.split(',')]

 policy_server = kw.pop('policy_server', False)
 if policy_server in (True, 'True', 'true', 'enable', 'yes', 'on', '1'):
 policy_server = True
 policy_listener_host = kw.pop('policy_listener_host', host)
 policy_listener_port = int(kw.pop('policy_listener_port', 10843))
 kw['policy_listener'] = (policy_listener_host, policy_listener_port)
 else:
 policy_server = False

 server = SocketIOServer((host, port),
 app,
 resource=_resource,
 transports=transports,
 policy_server=policy_server,
 **kw)
 if not _quiet:
 print('serving on http://%s:%s' % (host, port))
 server.serve_forever()

def serve_paste(app, global_conf, **kw):
 """pserve / paster serve / waitress replacement / integration

 You can pass as parameters:

 transports = websockets, xhr-multipart, xhr-longpolling, etc...
 policy_server = True
 """
 serve(app, **kw)
 return 0

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 Source code for socketio

__version__ = (0, 3, 5)

import logging
import gevent

log = logging.getLogger(__name__)

[docs]def socketio_manage(environ, namespaces, request=None, error_handler=None,
 json_loads=None, json_dumps=None):
 """Main SocketIO management function, call from within your Framework of
 choice's view.

 The ``environ`` variable is the WSGI ``environ``. It is used to extract
 Socket object from the underlying server (as the 'socketio' key), and will
 be attached to both the ``Socket`` and ``Namespace`` objects.

 The ``namespaces`` parameter is a dictionary of the namespace string
 representation as key, and the BaseNamespace namespace class descendant as
 a value. The empty string ('') namespace is the global namespace. You can
 use Socket.GLOBAL_NS to be more explicit. So it would look like:

 .. code-block:: python

 namespaces={'': GlobalNamespace,
 '/chat': ChatNamespace}

 The ``request`` object is not required, but will probably be useful to pass
 framework-specific things into your Socket and Namespace functions. It will
 simply be attached to the Socket and Namespace object (accessible through
 ``self.request`` in both cases), and it is not accessed in any case by the
 ``gevent-socketio`` library.

 Pass in an ``error_handler`` if you want to override the default
 error_handler (which is :func:`socketio.virtsocket.default_error_handler`.
 The callable you pass in should have the same signature as the default
 error handler.

 The ``json_loads`` and ``json_dumps`` are overrides for the default
 ``json.loads`` and ``json.dumps`` function calls. Override these at
 the top-most level here. This will affect all sockets created by this
 socketio manager, and all namespaces inside.

 This function will block the current "view" or "controller" in your
 framework to do the recv/send on the socket, and dispatch incoming messages
 to your namespaces.

 This is a simple example using Pyramid:

 .. code-block:: python

 def my_view(request):
 socketio_manage(request.environ, {'': GlobalNamespace}, request)

 NOTE: You must understand that this function is going to be called
 only once per socket opening, *even though* you are using a long
 polling mechanism. The subsequent calls (for long polling) will
 be hooked directly at the server-level, to interact with the
 active ``Socket`` instance. This means you will *not* get access
 to the future ``request`` or ``environ`` objects. This is of
 particular importance regarding sessions (like Beaker). The
 session will be opened once at the opening of the Socket, and not
 closed until the socket is closed. You are responsible for
 opening and closing the cookie-based session yourself if you want
 to keep its data in sync with the rest of your GET/POST calls.
 """
 socket = environ['socketio']
 socket._set_environ(environ)
 socket._set_namespaces(namespaces)

 if request:
 socket._set_request(request)

 if error_handler:
 socket._set_error_handler(error_handler)

 if json_loads:
 socket._set_json_loads(json_loads)
 if json_dumps:
 socket._set_json_dumps(json_dumps)

 receiver_loop = socket._spawn_receiver_loop()

 gevent.joinall([receiver_loop])

 # TODO: double check, what happens to the WSGI request here ? it vanishes ?
 return

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 All modules for which code is available

		socketio

		socketio.handler

		socketio.namespace

		socketio.packet

		socketio.server

		socketio.transports

		socketio.virtsocket

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio/namespace.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.namespace

import gevent
import re
import logging
import inspect

log = logging.getLogger(__name__)

regex to check the event name contains only alpha numerical characters
allowed_event_name_regex = re.compile(r'^[A-Za-z][A-Za-z0-9_]*$')

[docs]class BaseNamespace(object):
 """The **Namespace** is the primary interface a developer will use
 to create a gevent-socketio-based application.

 You should create your own subclass of this class, optionally using one
 of the :mod:`socketio.mixins` provided (or your own), and define methods
 such as:

 .. code-block:: python
 :linenos:

 def on_my_event(self, my_first_arg, my_second_arg):
 print "This is the my_first_arg object", my_first_arg
 print "This is the my_second_arg object", my_second_arg

 def on_my_second_event(self, whatever):
 print "This holds the first arg that was passed", whatever

 Handlers are automatically dispatched based on the name of the incoming
 event. For example, a 'user message' event will be handled by
 ``on_user_message()``. To change this, override :meth:`process_event`.

 We can also access the full packet directly by making an event handler
 that accepts a single argument named 'packet':

 .. code-block:: python
 :linenos:

 def on_third_event(self, packet):
 print "The full packet", packet
 print "See the BaseNamespace::call_method() method for details"
 """
 def __init__(self, environ, ns_name, request=None):
 self.environ = environ
 self.socket = environ['socketio']
 self.session = self.socket.session # easily accessible session
 self.request = request
 self.ns_name = ns_name
 #: Store for ACL allowed methods. Be careful as ``None`` means
 #: that all methods are allowed, while an empty list means every
 #: method is denied. Value: list of strings or ``None``. You
 #: can and should use the various ``acl`` methods to tweak this.
 self.allowed_methods = None
 self.jobs = []

 self.reset_acl()

 # Init the mixins if specified after.
 super(BaseNamespace, self).__init__()

 def is_method_allowed(self, method_name):
 """ACL system: this checks if you have access to that method_name,
 according to the set ACLs"""
 if self.allowed_methods is None:
 return True
 else:
 return method_name in self.allowed_methods

[docs] def add_acl_method(self, method_name):
 """ACL system: make the method_name accessible to the current socket"""

 if isinstance(self.allowed_methods, set):
 self.allowed_methods.add(method_name)
 else:
 self.allowed_methods = set([method_name])

[docs] def del_acl_method(self, method_name):
 """ACL system: ensure the user will not have access to that method."""
 if self.allowed_methods is None:
 raise ValueError(
 "Trying to delete an ACL method, but none were"
 + " defined yet! Or: No ACL restrictions yet, why would you"
 + " delete one?"
)

 self.allowed_methods.remove(method_name)

[docs] def lift_acl_restrictions(self):
 """ACL system: This removes restrictions on the Namespace's methods, so
 that all the ``on_*()`` and ``recv_*()`` can be accessed.
 """
 self.allowed_methods = None

[docs] def get_initial_acl(self):
 """ACL system: If you define this function, you must return
 all the 'event' names that you want your User (the established
 virtual Socket) to have access to.

 If you do not define this function, the user will have free
 access to all of the ``on_*()`` and ``recv_*()`` functions,
 etc.. methods.

 Return something like: ``set(['recv_connect', 'on_public_method'])``

 You can later modify this list dynamically (inside
 ``on_connect()`` for example) using:

 .. code-block:: python

 self.add_acl_method('on_secure_method')

 ``self.request`` is available in here, if you're already ready to
 do some auth. check.

 The ACLs are checked by the :meth:`process_packet` and/or
 :meth:`process_event` default implementations, before calling
 the class's methods.

 Beware, returning ``None`` leaves the namespace completely
 accessible.

 The methods that are open are stored in the ``allowed_methods``
 attribute of the ``Namespace`` instance.
 """
 return None

[docs] def reset_acl(self):
 """Resets ACL to its initial value (calling
 :meth:`get_initial_acl`` and applying that again).
 """
 self.allowed_methods = self.get_initial_acl()

[docs] def process_packet(self, packet):
 """If you override this, NONE of the functions in this class
 will be called. It is responsible for dispatching to
 :meth:`process_event` (which in turn calls ``on_*()`` and
 ``recv_*()`` methods).

 If the packet arrived here, it is because it belongs to this endpoint.

 For each packet arriving, the only possible path of execution, that is,
 the only methods that *can* be called are the following:

 * recv_connect()
 * recv_message()
 * recv_json()
 * recv_error()
 * recv_disconnect()
 * on_*()
 """
 packet_type = packet['type']

 if packet_type == 'event':
 return self.process_event(packet)
 elif packet_type == 'message':
 return self.call_method_with_acl('recv_message', packet,
 packet['data'])
 elif packet_type == 'json':
 return self.call_method_with_acl('recv_json', packet,
 packet['data'])
 elif packet_type == 'connect':
 self.socket.send_packet(packet)
 return self.call_method_with_acl('recv_connect', packet)
 elif packet_type == 'error':
 return self.call_method_with_acl('recv_error', packet)
 elif packet_type == 'ack':
 callback = self.socket._pop_ack_callback(packet['ackId'])
 if not callback:
 print "ERROR: No such callback for ackId %s" % packet['ackId']
 return
 return callback(*(packet['args']))
 elif packet_type == 'disconnect':
 # Force a disconnect on the namespace.
 return self.call_method_with_acl('recv_disconnect', packet)
 else:
 print "Unprocessed packet", packet
 # TODO: manage the other packet types: disconnect

[docs] def process_event(self, packet):
 """This function dispatches ``event`` messages to the correct
 functions. You should override this method only if you are not
 satisfied with the automatic dispatching to
 ``on_``-prefixed methods. You could then implement your own dispatch.
 See the source code for inspiration.

 There are two ways to deal with callbacks from the client side
 (meaning, the browser has a callback waiting for data that this
 server will be sending back):

 The first one is simply to return an object. If the incoming
 packet requested has an 'ack' field set, meaning the browser is
 waiting for callback data, it will automatically be packaged
 and sent, associated with the 'ackId' from the browser. The
 return value must be a *sequence* of elements, that will be
 mapped to the positional parameters of the callback function
 on the browser side.

 If you want to *know* that you're dealing with a packet
 that requires a return value, you can do those things manually
 by inspecting the ``ack`` and ``id`` keys from the ``packet``
 object. Your callback will behave specially if the name of
 the argument to your method is ``packet``. It will fill it
 with the unprocessed ``packet`` object for your inspection,
 like this:

 .. code-block:: python

 def on_my_callback(self, packet):
 if 'ack' in packet:
 self.emit('go_back', 'param1', id=packet['id'])
 """
 args = packet['args']
 name = packet['name']
 if not allowed_event_name_regex.match(name):
 self.error("unallowed_event_name",
 "name must only contains alpha numerical characters")
 return

 method_name = 'on_' + name.replace(' ', '_')
 # This means the args, passed as a list, will be expanded to
 # the method arg and if you passed a dict, it will be a dict
 # as the first parameter.

 return self.call_method_with_acl(method_name, packet, *args)

[docs] def call_method_with_acl(self, method_name, packet, *args):
 """You should always use this function to call the methods,
 as it checks if the user is allowed according to the ACLs.

 If you override :meth:`process_packet` or
 :meth:`process_event`, you should definitely want to use this
 instead of ``getattr(self, 'my_method')()``
 """
 if not self.is_method_allowed(method_name):
 self.error('method_access_denied',
 'You do not have access to method "%s"' % method_name)
 return

 return self.call_method(method_name, packet, *args)

[docs] def call_method(self, method_name, packet, *args):
 """This function is used to implement the two behaviors on dispatched
 ``on_*()`` and ``recv_*()`` method calls.

 Those are the two behaviors:

 * If there is only one parameter on the dispatched method and
 it is named ``packet``, then pass in the packet dict as the
 sole parameter.

 * Otherwise, pass in the arguments as specified by the
 different ``recv_*()`` methods args specs, or the
 :meth:`process_event` documentation.

 This method will also consider the
 ``exception_handler_decorator``. See Namespace documentation
 for details and examples.

 """
 method = getattr(self, method_name, None)
 if method is None:
 self.error('no_such_method',
 'The method "%s" was not found' % method_name)
 return

 specs = inspect.getargspec(method)
 func_args = specs.args
 if not len(func_args) or func_args[0] != 'self':
 self.error("invalid_method_args",
 "The server-side method is invalid, as it doesn't "
 "have 'self' as its first argument")
 return

 # Check if we need to decorate to handle exceptions
 if hasattr(self, 'exception_handler_decorator'):
 method = self.exception_handler_decorator(method)

 if len(func_args) == 2 and func_args[1] == 'packet':
 return method(packet)
 else:
 return method(*args)

[docs] def initialize(self):
 """This is called right after ``__init__``, on the initial
 creation of a namespace so you may handle any setup job you
 need.

 Namespaces are created only when some packets arrive that ask
 for the namespace. They are not created altogether when a new
 :class:`~socketio.virtsocket.Socket` connection is established,
 so you can have many many namespaces assigned (when calling
 :func:`~socketio.socketio_manage`) without clogging the
 memory.

 If you override this method, you probably want to initialize
 the variables you're going to use in the events handled by this
 namespace, setup ACLs, etc..

 This method is called on all base classes following the _`method resolution order <http://docs.python.org/library/stdtypes.html?highlight=mro#class.__mro__>`
 so you don't need to call super() to initialize the mixins or
 other derived classes.

 """
 pass

[docs] def recv_message(self, data):
 """This is more of a backwards compatibility hack. This will be
 called for messages sent with the original send() call on the client
 side. This is NOT the 'message' event, which you will catch with
 'on_message()'. The data arriving here is a simple string, with no
 other info.

 If you want to handle those messages, you should override this method.
 """
 return data

[docs] def recv_json(self, data):
 """This is more of a backwards compatibility hack. This will be
 called for JSON packets sent with the original json() call on the
 JavaScript side. This is NOT the 'json' event, which you will catch
 with 'on_json()'. The data arriving here is a python dict, with no
 event name.

 If you want to handle those messages, you should override this method.
 """
 return data

[docs] def recv_disconnect(self):
 """Override this function if you want to do something when you get a
 force disconnect packet.

 By default, this function calls the :meth:`disconnect` clean-up
 function. You probably want to call it yourself also, and put
 your clean-up routines in :meth:`disconnect` rather than here,
 because that :meth:`disconnect` function gets called
 automatically upon disconnection. This function is a
 pre-handle for when you get the `disconnect packet`.
 """
 self.disconnect(silent=True)

[docs] def recv_connect(self):
 """Called the first time a client connection is open on a
 Namespace. This *does not* fire on the global namespace.

 This allows you to do boilerplate stuff for
 the namespace like connecting to rooms, broadcasting events
 to others, doing authorization work, and tweaking the ACLs to open
 up the rest of the namespace (if it was closed at the
 beginning by having :meth:`get_initial_acl` return only
 ['recv_connect'])

 Also see the different :ref:`mixins <mixins_module>` (like
 `RoomsMixin`, `BroadcastMixin`).
 """
 pass

[docs] def recv_error(self, packet):
 """Override this function to handle the errors we get from the client.

 :param packet: the full packet.
 """
 pass

[docs] def error(self, error_name, error_message, msg_id=None, quiet=False):
 """Use this to use the configured ``error_handler`` yield an
 error message to your application.

 :param error_name: is a short string, to associate messages to recovery
 methods
 :param error_message: is some human-readable text, describing the error
 :param msg_id: is used to associate with a request
 :param quiet: specific to error_handlers. The default doesn't send a
 message to the user, but shows a debug message on the
 developer console.
 """
 self.socket.error(error_name, error_message, endpoint=self.ns_name,
 msg_id=msg_id, quiet=quiet)

[docs] def send(self, message, json=False, callback=None):
 """Use send to send a simple string message.

 If ``json`` is True, the message will be encoded as a JSON object
 on the wire, and decoded on the other side.

 This is mostly for backwards compatibility. ``emit()`` is more fun.

 :param callback: This is a callback function that will be
 called automatically by the client upon
 reception. It does not verify that the
 listener over there was completed with
 success. It just tells you that the browser
 got a hold of the packet.
 :type callback: callable
 """
 pkt = dict(type="message", data=message, endpoint=self.ns_name)
 if json:
 pkt['type'] = "json"

 if callback:
 # By passing ack=True, we use the old behavior of being returned
 # an 'ack' packet, automatically triggered by the client-side
 # with no user-code being run. The emit() version of the
 # callback is more useful I think :) So migrate your code.
 pkt['ack'] = True
 pkt['id'] = msgid = self.socket._get_next_msgid()
 self.socket._save_ack_callback(msgid, callback)

 self.socket.send_packet(pkt)

[docs] def emit(self, event, *args, **kwargs):
 """Use this to send a structured event, with a name and arguments, to
 the client.

 By default, it uses this namespace's endpoint. You can send messages on
 other endpoints with something like:

 ``self.socket['/other_endpoint'].emit()``.

 However, it is possible that the ``'/other_endpoint'`` was not
 initialized yet, and that would yield a ``KeyError``.

 The only supported ``kwargs`` is ``callback``. All other parameters
 must be passed positionally.

 :param event: The name of the event to trigger on the other end.
 :param callback: Pass in the callback keyword argument to define a
 call-back that will be called when the client acks.

 This callback is slightly different from the one from
 ``send()``, as this callback will receive parameters
 from the explicit call of the ``ack()`` function
 passed to the listener on the client side.

 The remote listener will need to explicitly ack (by
 calling its last argument, a function which is
 usually called 'ack') with some parameters indicating
 success or error. The 'ack' packet coming back here
 will then trigger the callback function with the
 returned values.
 :type callback: callable
 """
 callback = kwargs.pop('callback', None)

 if kwargs:
 raise ValueError(
 "emit() only supports positional argument, to stay "
 "compatible with the Socket.IO protocol. You can "
 "however pass in a dictionary as the first argument")
 pkt = dict(type="event", name=event, args=args,
 endpoint=self.ns_name)

 if callback:
 # By passing 'data', we indicate that we *want* an explicit ack
 # by the client code, not an automatic as with send().
 pkt['ack'] = 'data'
 pkt['id'] = msgid = self.socket._get_next_msgid()
 self.socket._save_ack_callback(msgid, callback)

 self.socket.send_packet(pkt)

[docs] def spawn(self, fn, *args, **kwargs):
 """Spawn a new process, attached to this Namespace.

 It will be monitored by the "watcher" process in the Socket. If the
 socket disconnects, all these greenlets are going to be killed, after
 calling BaseNamespace.disconnect()

 This method uses the ``exception_handler_decorator``. See
 Namespace documentation for more information.

 """
 # self.log.debug("Spawning sub-Namespace Greenlet: %s" % fn.__name__)
 if hasattr(self, 'exception_handler_decorator'):
 fn = self.exception_handler_decorator(fn)
 new = gevent.spawn(fn, *args, **kwargs)
 self.jobs.append(new)
 return new

[docs] def disconnect(self, silent=False):
 """Send a 'disconnect' packet, so that the user knows it has been
 disconnected (booted actually). This will trigger an onDisconnect()
 call on the client side.

 Over here, we will kill all ``spawn``ed processes and remove the
 namespace from the Socket object.

 :param silent: do not actually send the packet (if they asked for a
 disconnect for example), but just kill all jobs spawned
 by this Namespace, and remove it from the Socket.
 """
 if not silent:
 packet = {"type": "disconnect",
 "endpoint": self.ns_name}
 self.socket.send_packet(packet)
 # remove_namespace might throw GreenletExit so
 # kill_local_jobs must be in finally
 try:
 self.socket.remove_namespace(self.ns_name)
 finally:
 self.kill_local_jobs()

[docs] def kill_local_jobs(self):
 """Kills all the jobs spawned with BaseNamespace.spawn() on a namespace
 object.

 This will be called automatically if the ``watcher`` process detects
 that the Socket was closed.
 """
 gevent.killall(self.jobs)
 self.jobs = []

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio/virtsocket.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.virtsocket

"""Virtual Socket implementation, unifies all the Transports into one
single interface, and abstracts the work of the long-polling methods.

This module also has the ``default_error_handler`` implementation.
You can define your own so that the error messages are logged or sent
in a different way

:copyright: 2012, Alexandre Bourget <alexandre.bourget@savoirfairelinux.com>
:moduleauthor: Alexandre Bourget <alexandre.bourget@savoirfairelinux.com>

"""
import random
import weakref
import logging

import gevent
from gevent.queue import Queue
from gevent.event import Event

from socketio import packet
from socketio.defaultjson import default_json_loads, default_json_dumps

log = logging.getLogger(__name__)

[docs]def default_error_handler(socket, error_name, error_message, endpoint,
 msg_id, quiet):
 """This is the default error handler, you can override this when
 calling :func:`socketio.socketio_manage`.

 It basically sends an event through the socket with the 'error' name.

 See documentation for :meth:`Socket.error`.

 :param quiet: if quiet, this handler will not send a packet to the
 user, but only log for the server developer.
 """
 pkt = dict(type='event', name='error',
 args=[error_name, error_message],
 endpoint=endpoint)
 if msg_id:
 pkt['id'] = msg_id

 # Send an error event through the Socket
 if not quiet:
 socket.send_packet(pkt)

 # Log that error somewhere for debugging...
 log.error(u"default_error_handler: {}, {} (endpoint={}, msg_id={})".format(
 error_name, error_message, endpoint, msg_id
))

[docs]class Socket(object):
 """
 Virtual Socket implementation, checks heartbeats, writes to local queues
 for message passing, holds the Namespace objects, dispatches de packets
 to the underlying namespaces.

 This is the abstraction on top of the different transports. It's like
 if you used a WebSocket only...
 """

 STATE_CONNECTING = "CONNECTING"
 STATE_CONNECTED = "CONNECTED"
 STATE_DISCONNECTING = "DISCONNECTING"
 STATE_DISCONNECTED = "DISCONNECTED"

 GLOBAL_NS = ''
 """Use this to be explicit when specifying a Global Namespace (an endpoint
 with no name, not '/chat' or anything."""

 json_loads = staticmethod(default_json_loads)
 json_dumps = staticmethod(default_json_dumps)

 def __init__(self, server, config, error_handler=None):
 self.server = weakref.proxy(server)
 self.sessid = str(random.random())[2:]
 self.session = {} # the session dict, for general developer usage
 self.client_queue = Queue() # queue for messages to client
 self.server_queue = Queue() # queue for messages to server
 self.hits = 0
 self.heartbeats = 0
 self.timeout = Event()
 self.wsgi_app_greenlet = None
 self.state = "NEW"
 self.connection_established = False
 self.ack_callbacks = {}
 self.ack_counter = 0
 self.request = None
 self.environ = None
 self.namespaces = {}
 self.active_ns = {} # Namespace sessions that were instantiated
 self.jobs = []
 self.error_handler = default_error_handler
 self.config = config
 if error_handler is not None:
 self.error_handler = error_handler

 def _set_namespaces(self, namespaces):
 """This is a mapping (dict) of the different '/namespaces' to their
 BaseNamespace object derivative.

 This is called by socketio_manage()."""
 self.namespaces = namespaces

 def _set_request(self, request):
 """Saves the request object for future use by the different Namespaces.

 This is called by socketio_manage().
 """
 self.request = request

 def _set_environ(self, environ):
 """Save the WSGI environ, for future use.

 This is called by socketio_manage().
 """
 self.environ = environ

 def _set_error_handler(self, error_handler):
 """Changes the default error_handler function to the one specified

 This is called by socketio_manage().
 """
 self.error_handler = error_handler

 def _set_json_loads(self, json_loads):
 """Change the default JSON decoder.

 This should be a callable that accepts a single string, and returns
 a well-formed object.
 """
 self.json_loads = json_loads

 def _set_json_dumps(self, json_dumps):
 """Change the default JSON decoder.

 This should be a callable that accepts a single string, and returns
 a well-formed object.
 """
 self.json_dumps = json_dumps

 def _get_next_msgid(self):
 """This retrieves the next value for the 'id' field when sending
 an 'event' or 'message' or 'json' that asks the remote client
 to 'ack' back, so that we trigger the local callback.
 """
 self.ack_counter += 1
 return self.ack_counter

 def _save_ack_callback(self, msgid, callback):
 """Keep a reference of the callback on this socket."""
 if msgid in self.ack_callbacks:
 return False
 self.ack_callbacks[msgid] = callback

 def _pop_ack_callback(self, msgid):
 """Fetch the callback for a given msgid, if it exists, otherwise,
 return None"""
 if msgid not in self.ack_callbacks:
 return None
 return self.ack_callbacks.pop(msgid)

 def __str__(self):
 result = ['sessid=%r' % self.sessid]
 if self.state == self.STATE_CONNECTED:
 result.append('connected')
 if self.client_queue.qsize():
 result.append('client_queue[%s]' % self.client_queue.qsize())
 if self.server_queue.qsize():
 result.append('server_queue[%s]' % self.server_queue.qsize())
 if self.hits:
 result.append('hits=%s' % self.hits)
 if self.heartbeats:
 result.append('heartbeats=%s' % self.heartbeats)

 return ' '.join(result)

 def __getitem__(self, key):
 """This will get the nested Namespace using its '/chat' reference.

 Using this, you can go from one Namespace to the other (to emit, add
 ACLs, etc..) with:

 adminnamespace.socket['/chat'].add_acl_method('kick-ban')

 """
 return self.active_ns[key]

 def __hasitem__(self, key):
 """Verifies if the namespace is active (was initialized)"""
 return key in self.active_ns

 @property
[docs] def connected(self):
 """Returns whether the state is CONNECTED or not."""
 return self.state == self.STATE_CONNECTED

[docs] def incr_hits(self):
 self.hits += 1

[docs] def heartbeat(self):
 """This makes the heart beat for another X seconds. Call this when
 you get a heartbeat packet in.

 This clear the heartbeat disconnect timeout (resets for X seconds).
 """
 self.timeout.set()

[docs] def kill(self, detach=False):
 """This function must/will be called when a socket is to be completely
 shut down, closed by connection timeout, connection error or explicit
 disconnection from the client.

 It will call all of the Namespace's
 :meth:`~socketio.namespace.BaseNamespace.disconnect` methods
 so that you can shut-down things properly.

 """
 # Clear out the callbacks
 self.ack_callbacks = {}
 if self.connected:
 self.state = self.STATE_DISCONNECTING
 self.server_queue.put_nowait(None)
 self.client_queue.put_nowait(None)
 if len(self.active_ns) > 0:
 log.debug("Calling disconnect() on %s" % self)
 self.disconnect()

 if detach:
 self.detach()

 gevent.killall(self.jobs)

[docs] def detach(self):
 """Detach this socket from the server. This should be done in
 conjunction with kill(), once all the jobs are dead, detach the
 socket for garbage collection."""

 log.debug("Removing %s from server sockets" % self)
 if self.sessid in self.server.sockets:
 self.server.sockets.pop(self.sessid)

[docs] def put_server_msg(self, msg):
 """Writes to the server's pipe, to end up in in the Namespaces"""
 self.heartbeat()
 self.server_queue.put_nowait(msg)

[docs] def put_client_msg(self, msg):
 """Writes to the client's pipe, to end up in the browser"""
 self.client_queue.put_nowait(msg)

[docs] def get_client_msg(self, **kwargs):
 """Grab a message to send it to the browser"""
 return self.client_queue.get(**kwargs)

[docs] def get_server_msg(self, **kwargs):
 """Grab a message, to process it by the server and dispatch calls
 """
 return self.server_queue.get(**kwargs)

[docs] def get_multiple_client_msgs(self, **kwargs):
 """Get multiple messages, in case we're going through the various
 XHR-polling methods, on which we can pack more than one message if the
 rate is high, and encode the payload for the HTTP channel."""
 client_queue = self.client_queue
 msgs = [client_queue.get(**kwargs)]
 while client_queue.qsize():
 msgs.append(client_queue.get())
 return msgs

[docs] def error(self, error_name, error_message, endpoint=None, msg_id=None,
 quiet=False):
 """Send an error to the user, using the custom or default
 ErrorHandler configured on the [TODO: Revise this] Socket/Handler
 object.

 :param error_name: is a simple string, for easy association on
 the client side

 :param error_message: is a human readable message, the user
 will eventually see

 :param endpoint: set this if you have a message specific to an
 end point

 :param msg_id: set this if your error is relative to a
 specific message

 :param quiet: way to make the error handler quiet. Specific to
 the handler. The default handler will only log,
 with quiet.
 """
 handler = self.error_handler
 return handler(
 self, error_name, error_message, endpoint, msg_id, quiet)

 # User facing low-level function

[docs] def disconnect(self, silent=False):
 """Calling this method will call the
 :meth:`~socketio.namespace.BaseNamespace.disconnect` method on
 all the active Namespaces that were open, killing all their
 jobs and sending 'disconnect' packets for each of them.

 Normally, the Global namespace (endpoint = '') has special meaning,
 as it represents the whole connection,

 :param silent: when True, pass on the ``silent`` flag to the Namespace
 :meth:`~socketio.namespace.BaseNamespace.disconnect`
 calls.
 """
 for ns_name, ns in list(self.active_ns.iteritems()):
 ns.recv_disconnect()

[docs] def remove_namespace(self, namespace):
 """This removes a Namespace object from the socket.

 This is usually called by
 :meth:`~socketio.namespace.BaseNamespace.disconnect`.

 """
 if namespace in self.active_ns:
 del self.active_ns[namespace]

 if len(self.active_ns) == 0 and self.connected:
 self.kill(detach=True)

[docs] def send_packet(self, pkt):
 """Low-level interface to queue a packet on the wire (encoded as wire
 protocol"""
 self.put_client_msg(packet.encode(pkt, self.json_dumps))

[docs] def spawn(self, fn, *args, **kwargs):
 """Spawn a new Greenlet, attached to this Socket instance.

 It will be monitored by the "watcher" method
 """

 log.debug("Spawning sub-Socket Greenlet: %s" % fn.__name__)
 job = gevent.spawn(fn, *args, **kwargs)
 self.jobs.append(job)
 return job

 def _receiver_loop(self):
 """This is the loop that takes messages from the queue for the server
 to consume, decodes them and dispatches them.

 It is the main loop for a socket. We join on this process before
 returning control to the web framework.

 This process is not tracked by the socket itself, it is not going
 to be killed by the ``gevent.killall(socket.jobs)``, so it must
 exit gracefully itself.
 """

 while True:
 rawdata = self.get_server_msg()

 if not rawdata:
 continue # or close the connection ?
 try:
 pkt = packet.decode(rawdata, self.json_loads)
 except (ValueError, KeyError, Exception), e:
 self.error('invalid_packet',
 "There was a decoding error when dealing with packet "
 "with event: %s... (%s)" % (rawdata[:20], e))
 continue

 if pkt['type'] == 'heartbeat':
 # This is already dealth with in put_server_msg() when
 # any incoming raw data arrives.
 continue

 if pkt['type'] == 'disconnect' and pkt['endpoint'] == '':
 # On global namespace, we kill everything.
 self.kill(detach=True)
 continue

 endpoint = pkt['endpoint']

 if endpoint not in self.namespaces:
 self.error("no_such_namespace",
 "The endpoint you tried to connect to "
 "doesn't exist: %s" % endpoint, endpoint=endpoint)
 continue
 elif endpoint in self.active_ns:
 pkt_ns = self.active_ns[endpoint]
 else:
 new_ns_class = self.namespaces[endpoint]
 pkt_ns = new_ns_class(self.environ, endpoint,
 request=self.request)
 # This calls initialize() on all the classes and mixins, etc..
 # in the order of the MRO
 for cls in type(pkt_ns).__mro__:
 if hasattr(cls, 'initialize'):
 cls.initialize(pkt_ns) # use this instead of __init__,
 # for less confusion

 self.active_ns[endpoint] = pkt_ns

 retval = pkt_ns.process_packet(pkt)

 # Has the client requested an 'ack' with the reply parameters ?
 if pkt.get('ack') == "data" and pkt.get('id'):
 if type(retval) is tuple:
 args = list(retval)
 else:
 args = [retval]
 returning_ack = dict(type='ack', ackId=pkt['id'],
 args=args,
 endpoint=pkt.get('endpoint', ''))
 self.send_packet(returning_ack)

 # Now, are we still connected ?
 if not self.connected:
 self.kill(detach=True) # ?? what,s the best clean-up
 # when its not a
 # user-initiated disconnect
 return

 def _spawn_receiver_loop(self):
 """Spawns the reader loop. This is called internall by
 socketio_manage().
 """
 job = gevent.spawn(self._receiver_loop)
 self.jobs.append(job)
 return job

 def _watcher(self):
 """Watch out if we've been disconnected, in that case, kill
 all the jobs.

 """
 while True:
 gevent.sleep(1.0)
 if not self.connected:
 for ns_name, ns in list(self.active_ns.iteritems()):
 ns.recv_disconnect()
 # Killing Socket-level jobs
 gevent.killall(self.jobs)
 break

 def _spawn_watcher(self):
 """This one is not waited for with joinall(socket.jobs), as it
 is an external watcher, to clean up when everything is done."""
 job = gevent.spawn(self._watcher)
 return job

 def _heartbeat(self):
 """Start the heartbeat Greenlet to check connection health."""
 interval = self.config['heartbeat_interval']
 while self.connected:
 gevent.sleep(interval)
 # TODO: this process could use a timeout object like the disconnect
 # timeout thing, and ONLY send packets when none are sent!
 # We would do that by calling timeout.set() for a "sending"
 # timeout. If we're sending 100 messages a second, there is
 # no need to push some heartbeats in there also.
 self.put_client_msg("2::")

 def _heartbeat_timeout(self):
 timeout = float(self.config['heartbeat_timeout'])
 while True:
 self.timeout.clear()
 gevent.sleep(0)
 wait_res = self.timeout.wait(timeout=timeout)
 if not wait_res:
 if self.connected:
 log.debug("heartbeat timed out, killing socket")
 self.kill(detach=True)
 return

 def _spawn_heartbeat(self):
 """This functions returns a list of jobs"""
 self.spawn(self._heartbeat)
 self.spawn(self._heartbeat_timeout)

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

virtsocket.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.virtsocket

Virtual Socket implementation, unifies all the Transports into one
single interface, and abstracts the work of the long-polling methods.

This module also has the default_error_handler implementation.
You can define your own so that the error messages are logged or sent
in a different way

		copyright:		2012, Alexandre Bourget <alexandre.bourget@savoirfairelinux.com>

		moduleauthor:		Alexandre Bourget <alexandre.bourget@savoirfairelinux.com>

		
class socketio.virtsocket.Socket(server, config, error_handler=None)[source]

		Bases: object [http://docs.python.org/library/functions.html#object]

Virtual Socket implementation, checks heartbeats, writes to local queues
for message passing, holds the Namespace objects, dispatches de packets
to the underlying namespaces.

This is the abstraction on top of the different transports. It’s like
if you used a WebSocket only...

		
GLOBAL_NS = ''

		Use this to be explicit when specifying a Global Namespace (an endpoint
with no name, not ‘/chat’ or anything.

		
STATE_CONNECTED = 'CONNECTED'

		

		
STATE_CONNECTING = 'CONNECTING'

		

		
STATE_DISCONNECTED = 'DISCONNECTED'

		

		
STATE_DISCONNECTING = 'DISCONNECTING'

		

		
connected[source]

		Returns whether the state is CONNECTED or not.

		
detach()[source]

		Detach this socket from the server. This should be done in
conjunction with kill(), once all the jobs are dead, detach the
socket for garbage collection.

		
disconnect(silent=False)[source]

		Calling this method will call the
disconnect() method on
all the active Namespaces that were open, killing all their
jobs and sending ‘disconnect’ packets for each of them.

Normally, the Global namespace (endpoint = ‘’) has special meaning,
as it represents the whole connection,

		Parameters:		silent – when True, pass on the silent flag to the Namespace
disconnect()
calls.

		
error(error_name, error_message, endpoint=None, msg_id=None, quiet=False)[source]

		Send an error to the user, using the custom or default
ErrorHandler configured on the [TODO: Revise this] Socket/Handler
object.

		Parameters:		
		error_name – is a simple string, for easy association on
the client side

		error_message – is a human readable message, the user
will eventually see

		endpoint – set this if you have a message specific to an
end point

		msg_id – set this if your error is relative to a
specific message

		quiet – way to make the error handler quiet. Specific to
the handler. The default handler will only log,
with quiet.

		
get_client_msg(**kwargs)[source]

		Grab a message to send it to the browser

		
get_multiple_client_msgs(**kwargs)[source]

		Get multiple messages, in case we’re going through the various
XHR-polling methods, on which we can pack more than one message if the
rate is high, and encode the payload for the HTTP channel.

		
get_server_msg(**kwargs)[source]

		Grab a message, to process it by the server and dispatch calls

		
heartbeat()[source]

		This makes the heart beat for another X seconds. Call this when
you get a heartbeat packet in.

This clear the heartbeat disconnect timeout (resets for X seconds).

		
incr_hits()[source]

		

		
static json_dumps(data)

		

		
static json_loads(data)

		

		
kill(detach=False)[source]

		This function must/will be called when a socket is to be completely
shut down, closed by connection timeout, connection error or explicit
disconnection from the client.

It will call all of the Namespace’s
disconnect() methods
so that you can shut-down things properly.

		
put_client_msg(msg)[source]

		Writes to the client’s pipe, to end up in the browser

		
put_server_msg(msg)[source]

		Writes to the server’s pipe, to end up in in the Namespaces

		
remove_namespace(namespace)[source]

		This removes a Namespace object from the socket.

This is usually called by
disconnect().

		
send_packet(pkt)[source]

		Low-level interface to queue a packet on the wire (encoded as wire
protocol

		
spawn(fn, *args, **kwargs)[source]

		Spawn a new Greenlet, attached to this Socket instance.

It will be monitored by the “watcher” method

		
socketio.virtsocket.default_error_handler(socket, error_name, error_message, endpoint, msg_id, quiet)[source]

		This is the default error handler, you can override this when
calling socketio.socketio_manage().

It basically sends an event through the socket with the ‘error’ name.

See documentation for Socket.error().

		Parameters:		quiet – if quiet, this handler will not send a packet to the
user, but only log for the server developer.

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

server_integration.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

Server integration layers

As gevent-socketio runs on top of Gevent, you need a Gevent-based
server, to yield the control cooperatively to the Greenlets in there.

gunicorn

If you have a python file that includes a WSGI application, for gunicorn
integration all you have to do is include the socketio.sgunicorn

gunicorn --worker-class socketio.sgunicorn.GeventSocketIOWorker module:app

paster / Pyramid’s pserve

Through Gunicorn

Gunicorn will handle workers for you and has other features.

For paster, you just have to define the configuration like this:

[server:main]
use = egg:gunicorn#main
host = 0.0.0.0
port = 6543
workers = 4
worker_class = socketio.sgunicorn.GeventSocketIOWorker

Directly through gevent

Straight gevent integration is the simplest and has no dependencies.

In your .ini file:

[server:main]
use = egg:gevent-socketio#paster
host = 0.0.0.0
port = 6543
resource = socket.io
transports = websocket, xhr-polling, xhr-multipart
policy_server = True
policy_listener_host = 0.0.0.0
policy_listener_port = 10843

policy_listener_host defaults to host,
policy_listener_port defaults to 10843, transports
defaults to all transports, policy_server defaults to False in
here, resource defaults to socket.io.

So you can have a slimmed-down version:

[server:main]
use = egg:gevent-socketio#paster
host = 0.0.0.0
port = 6543

django runserver

You can either define a wsgi app and launch it with gunicorn:

wsgi.py:

import django.core.handlers.wsgi
import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'
app = django.core.handlers.wsgi.WSGIHandler()

from commandline:

gunicorn --worker-class socketio.sgunicorn.GeventSocketIOWorker wsgi:app

or you can use gevent directly:

run.py

#!/usr/bin/env python
from gevent import monkey
from socketio.server import SocketIOServer
import django.core.handlers.wsgi
import os
import sys

monkey.patch_all()

try:
 import settings
except ImportError:
 sys.stderr.write("Error: Can't find the file 'settings.py' in the directory containing %r. It appears you've customized things.\nYou'll have to run django-admin.py, passing it your settings module.\n(If the file settings.py does indeed exist, it's causing an ImportError somehow.)\n" % __file__)
 sys.exit(1)

PORT = 9000

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

application = django.core.handlers.wsgi.WSGIHandler()

sys.path.insert(0, os.path.join(settings.PROJECT_ROOT, "apps"))

if __name__ == '__main__':
 print 'Listening on http://127.0.0.1:%s and on port 10843 (flash policy server)' % PORT
 SocketIOServer(('', PORT), application, resource="socket.io").serve_forever()

Databases

Since gevent is a cooperative concurrency library, no process or
routine or library must block on I/O without yielding control to the
gevent hub, if you want your application to be fast and efficient.
Making these libraries compatible with such a concurrency model is
often called greening, in reference to Green threads [http://en.wikipedia.org/wiki/Green_threads].

You will need `green`_ databases APIs to gevent to work correctly. See:

		MySQL:
* PyMySQL https://github.com/petehunt/PyMySQL/

		PostgreSQL:
* psycopg2 http://initd.org/psycopg/docs/advanced.html#index-8
* psycogreen https://bitbucket.org/dvarrazzo/psycogreen/src

Web server front-ends

If your web server does not support websockets, you will not be able
to use this transport, although the other transports may
work. However, this would diminish the value of using real-time
communications.

The websocket implementation in the different web servers is getting
better every day, but before investing too much too quickly, you might
want to have a look at your web server’s status on the subject.

[INSERT THE STATE OF THE DIFFERENT SERVER IMPLEMENTATIONS SUPPORTING WEBSOCKET
FORWARDING]

nginx status

Nginx added the ability to support websockets with version 1.3.13 but it requires a bit of explicit configuration.

See: http://nginx.org/en/docs/http/websocket.html

Assuming your config is setup to proxy to your gevent server via something like this:

location / {
 proxy_pass http://127.0.0.1:7000;
 proxy_redirect off;
}

You’ll just need to add this additional location section. Note in this example we’re using /socket.io as the entry point (you might have to change it)

location /socket.io {
 proxy_pass http://127.0.0.1:7000/socket.io;
 proxy_redirect off;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
}

Make sure you’re running the latest version of Nginx (or atleast >= 1.3.13). Older versions don’t support websockets, and the client will have to fallback to long polling.

Apache

Using HAProxy to load-balance

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

namespace.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.namespace

		
class socketio.namespace.BaseNamespace(environ, ns_name, request=None)[source]

		The Namespace is the primary interface a developer will use
to create a gevent-socketio-based application.

You should create your own subclass of this class, optionally using one
of the socketio.mixins provided (or your own), and define methods
such as:

		1
2
3
4
5
6

		def on_my_event(self, my_first_arg, my_second_arg):
 print "This is the my_first_arg object", my_first_arg
 print "This is the my_second_arg object", my_second_arg

def on_my_second_event(self, whatever):
 print "This holds the first arg that was passed", whatever

Handlers are automatically dispatched based on the name of the incoming
event. For example, a ‘user message’ event will be handled by
on_user_message(). To change this, override process_event().

We can also access the full packet directly by making an event handler
that accepts a single argument named ‘packet’:

		1
2
3

		def on_third_event(self, packet):
 print "The full packet", packet
 print "See the BaseNamespace::call_method() method for details"

Namespace initialization

You can override this method:

		
BaseNamespace.initialize()[source]

		This is called right after __init__, on the initial
creation of a namespace so you may handle any setup job you
need.

Namespaces are created only when some packets arrive that ask
for the namespace. They are not created altogether when a new
Socket connection is established,
so you can have many many namespaces assigned (when calling
socketio_manage()) without clogging the
memory.

If you override this method, you probably want to initialize
the variables you’re going to use in the events handled by this
namespace, setup ACLs, etc..

This method is called on all base classes following the method resolution order <http://docs.python.org/library/stdtypes.html?highlight=mro#class.__mro__>
so you don’t need to call super() to initialize the mixins or
other derived classes.

Event flow

This is an attempt at catching the gotchas of the Socket.IO protocol,
which, for historical reasons, sometimes have weird event flow.

The first function to fire is initialize(), which will be called
only if there is an incoming packet for the Namespace. A successful
javascript call to io.connect() is not sufficient for
gevent-socketio to trigger the creation of a Namespace object.
Some event has to flow from the client to the server. The connection
will appear to have succeeded from the client’s side, but that is
because gevent-socketio maintains the virtual socket up and running
before it hits your application. This is why it is a good pratice to
send a packet (often a login, or subscribe or connect JSON
event, with io.emit() in the browser).

If you’re using the GLOBAL_NS, the recv_connect() will not fire on
your namespace, because when the connection is opened, there is no
such packet sent. The connect packet is only sent over (and
explicitly sent) by the javascript client when it tries to communicate
with some “non-global” namespaces. That is why it is recommended to
always use namespaces, to avoid having a different behavior for your
different namespaces. It also makes things explicit in your
application, when you have something such as /chat, or
/live_data. Before a certain version of Socket.IO, there was only
a global namespace, and so this behavior was kept for backwards
compatibility.

Then flows the normal events, back and forth as described elsewhere (elsewhere??).

Upon disconnection, here is what happens: [INSERT HERE the details
flow of disconnection handling, events fired, physical closing of the
connection and ways to terminate a socket, when is the Namespace
killed, the state of the spawn’d processes for each Namespace and each
virtsocket. This really needs to be done, and I’d appreciate having
people investigate this thoroughly]

There you go :)

Namespace instance properties

		
BaseNamespace.session

		The session is a simple dict that is created with
each Socket instance, and is
copied to each Namespace created under it. It is a general
purpose store for any data you want to associated with an open
Socket.

		
BaseNamespace.request

		This is the request object (or really, any object) that you
have passed as the request parameter to the
socketio_manage() function.

		
BaseNamespace.ns_name

		The name of the namespace, like /chat or the empty string,
for the “global” namespace.

		
BaseNamespace.environ

		The environ WSGI dictionary, as it was received upon
reception of the first request that established the virtual
Socket. This will never contain the subsequent environ for
the next polling, so beware when using cookie-based sessions
(like Beaker).

		
BaseNamespace.socket

		A reference to the Socket
instance this namespace is attached to.

Sending data

Functions to send data through the socket:

		
BaseNamespace.emit(event, *args, **kwargs)[source]

		Use this to send a structured event, with a name and arguments, to
the client.

By default, it uses this namespace’s endpoint. You can send messages on
other endpoints with something like:

self.socket['/other_endpoint'].emit().

However, it is possible that the '/other_endpoint' was not
initialized yet, and that would yield a KeyError.

The only supported kwargs is callback. All other parameters
must be passed positionally.

		Parameters:		
		event – The name of the event to trigger on the other end.

		callback (callable [http://docs.python.org/library/functions.html#callable]) – Pass in the callback keyword argument to define a
call-back that will be called when the client acks.

This callback is slightly different from the one from
send(), as this callback will receive parameters
from the explicit call of the ack() function
passed to the listener on the client side.

The remote listener will need to explicitly ack (by
calling its last argument, a function which is
usually called ‘ack’) with some parameters indicating
success or error. The ‘ack’ packet coming back here
will then trigger the callback function with the
returned values.

		
BaseNamespace.send(message, json=False, callback=None)[source]

		Use send to send a simple string message.

If json is True, the message will be encoded as a JSON object
on the wire, and decoded on the other side.

This is mostly for backwards compatibility. emit() is more fun.

		Parameters:		callback (callable [http://docs.python.org/library/functions.html#callable]) – This is a callback function that will be
called automatically by the client upon
reception. It does not verify that the
listener over there was completed with
success. It just tells you that the browser
got a hold of the packet.

		
BaseNamespace.error(error_name, error_message, msg_id=None, quiet=False)[source]

		Use this to use the configured error_handler yield an
error message to your application.

		Parameters:		
		error_name – is a short string, to associate messages to recovery
methods

		error_message – is some human-readable text, describing the error

		msg_id – is used to associate with a request

		quiet – specific to error_handlers. The default doesn’t send a
message to the user, but shows a debug message on the
developer console.

		
BaseNamespace.disconnect(silent=False)[source]

		Send a ‘disconnect’ packet, so that the user knows it has been
disconnected (booted actually). This will trigger an onDisconnect()
call on the client side.

Over here, we will kill all ``spawn``ed processes and remove the
namespace from the Socket object.

		Parameters:		silent – do not actually send the packet (if they asked for a
disconnect for example), but just kill all jobs spawned
by this Namespace, and remove it from the Socket.

Dealing with incoming data

		
BaseNamespace.recv_connect()[source]

		Called the first time a client connection is open on a
Namespace. This does not fire on the global namespace.

This allows you to do boilerplate stuff for
the namespace like connecting to rooms, broadcasting events
to others, doing authorization work, and tweaking the ACLs to open
up the rest of the namespace (if it was closed at the
beginning by having get_initial_acl() return only
[‘recv_connect’])

Also see the different mixins (like
RoomsMixin, BroadcastMixin).

		
BaseNamespace.recv_message(data)[source]

		This is more of a backwards compatibility hack. This will be
called for messages sent with the original send() call on the client
side. This is NOT the ‘message’ event, which you will catch with
‘on_message()’. The data arriving here is a simple string, with no
other info.

If you want to handle those messages, you should override this method.

		
BaseNamespace.recv_json(data)[source]

		This is more of a backwards compatibility hack. This will be
called for JSON packets sent with the original json() call on the
JavaScript side. This is NOT the ‘json’ event, which you will catch
with ‘on_json()’. The data arriving here is a python dict, with no
event name.

If you want to handle those messages, you should override this method.

		
BaseNamespace.recv_error(packet)[source]

		Override this function to handle the errors we get from the client.

		Parameters:		packet – the full packet.

		
BaseNamespace.recv_disconnect()[source]

		Override this function if you want to do something when you get a
force disconnect packet.

By default, this function calls the disconnect() clean-up
function. You probably want to call it yourself also, and put
your clean-up routines in disconnect() rather than here,
because that disconnect() function gets called
automatically upon disconnection. This function is a
pre-handle for when you get the disconnect packet.

		
BaseNamespace.exception_handler_decorator(fn)

		This method can be a static, class or bound method (that is, with
@staticmethod, @classmethod or without). It receives one
single parameter, and that parameter will be the function the
framework is trying to call because some information arrived from
the remote client, for instance: on_* and recv_*
functions that you declared on your namespace.

The decorator is also used to wrap called to
self.spawn(self.job_something), so that if anything happens
after you’ve spawn’d a greenlet, it will still catch it and
handle it.

It should return a decorator with exception handling properly
dealt with. For example:

import traceback, sys
import logging
def exception_handler_decorator(self, fn):
 def wrap(*args, **kwargs):
 try:
 return fn(*args, **kwargs)
 except Exception, e:
 stack = traceback.format_exception(*sys.exc_info())
 db.Evtrack.write("socketio_exception",
 {"error": str(e),
 "trace": stack},
 self.request.email)
 logging.getLogger('exc_logger').exception(e)
 return wrap

		
BaseNamespace.process_event(packet)[source]

		This function dispatches event messages to the correct
functions. You should override this method only if you are not
satisfied with the automatic dispatching to
on_-prefixed methods. You could then implement your own dispatch.
See the source code for inspiration.

There are two ways to deal with callbacks from the client side
(meaning, the browser has a callback waiting for data that this
server will be sending back):

The first one is simply to return an object. If the incoming
packet requested has an ‘ack’ field set, meaning the browser is
waiting for callback data, it will automatically be packaged
and sent, associated with the ‘ackId’ from the browser. The
return value must be a sequence of elements, that will be
mapped to the positional parameters of the callback function
on the browser side.

If you want to know that you’re dealing with a packet
that requires a return value, you can do those things manually
by inspecting the ack and id keys from the packet
object. Your callback will behave specially if the name of
the argument to your method is packet. It will fill it
with the unprocessed packet object for your inspection,
like this:

def on_my_callback(self, packet):
 if 'ack' in packet:
 self.emit('go_back', 'param1', id=packet['id'])

You would override this method only if you are not completely
satisfied with the automatic dispatching to on_-prefixed
methods. You could then implement your own dispatch. See the
source code for inspiration.

Process management

Managing the different callbacks, greenlets and tasks you spawn from
this namespace:

		
BaseNamespace.spawn(fn, *args, **kwargs)[source]

		Spawn a new process, attached to this Namespace.

It will be monitored by the “watcher” process in the Socket. If the
socket disconnects, all these greenlets are going to be killed, after
calling BaseNamespace.disconnect()

This method uses the exception_handler_decorator. See
Namespace documentation for more information.

		
BaseNamespace.kill_local_jobs()[source]

		Kills all the jobs spawned with BaseNamespace.spawn() on a namespace
object.

This will be called automatically if the watcher process detects
that the Socket was closed.

ACL system

The ACL system grants access to the different on_*() and
recv_*() methods of your subclass.

Developers will normally override get_initial_acl() to
return a list of the functions they want to initially open.
Usually, it will be an on_connect event handler, that will
perform authentication and/or authorization, set some variables
on the Namespace, and then open up the rest of the Namespace
using lift_acl_restrictions() or more granularly with
add_acl_method() and del_acl_method(). It is also
possible to check these things inside initialize() when,
for example, you have authenticated a Global Namespace object,
and you want to re-use those credentials or authentication infos
in a new Namespace:

GLOBAL_NS = ''

class MyNamespace(BaseNamespace):
 ...
 def initialize(self):
 self.my_auth = MyAuthObjet()
 if self.socket[GLOBAL_NS].my_auth.logged_in == True:
 self.my_auth.logged_in = True

The content of the ACL is a list of strings corresponding to the full name
of the methods defined on your subclass, like: "on_my_event" or
"recv_json".

		
BaseNamespace.get_initial_acl()[source]

		ACL system: If you define this function, you must return
all the ‘event’ names that you want your User (the established
virtual Socket) to have access to.

If you do not define this function, the user will have free
access to all of the on_*() and recv_*() functions,
etc.. methods.

Return something like: set(['recv_connect', 'on_public_method'])

You can later modify this list dynamically (inside
on_connect() for example) using:

self.add_acl_method('on_secure_method')

self.request is available in here, if you’re already ready to
do some auth. check.

The ACLs are checked by the process_packet() and/or
process_event() default implementations, before calling
the class’s methods.

Beware, returning None leaves the namespace completely
accessible.

The methods that are open are stored in the allowed_methods
attribute of the Namespace instance.

		
BaseNamespace.add_acl_method(method_name)[source]

		ACL system: make the method_name accessible to the current socket

		
BaseNamespace.del_acl_method(method_name)[source]

		ACL system: ensure the user will not have access to that method.

		
BaseNamespace.lift_acl_restrictions()[source]

		ACL system: This removes restrictions on the Namespace’s methods, so
that all the on_*() and recv_*() can be accessed.

		
BaseNamespace.reset_acl()[source]

		Resets ACL to its initial value (calling
get_initial_acl`() and applying that again).

This function is used internally, but can be useful to the developer:

This is the attribute where the allowed methods are stored, as a list of
strings, or a single None:

.. autoattribute:: allowed_methods

Low-level methods

Packet dispatching methods. These functions are normally not overriden if
you are satisfied with the normal dispatch behavior:

		
BaseNamespace.process_packet(packet)[source]

		If you override this, NONE of the functions in this class
will be called. It is responsible for dispatching to
process_event() (which in turn calls on_*() and
recv_*() methods).

If the packet arrived here, it is because it belongs to this endpoint.

For each packet arriving, the only possible path of execution, that is,
the only methods that can be called are the following:

		recv_connect()

		recv_message()

		recv_json()

		recv_error()

		recv_disconnect()

		on_*()

		
BaseNamespace.call_method_with_acl(method_name, packet, *args)[source]

		You should always use this function to call the methods,
as it checks if the user is allowed according to the ACLs.

If you override process_packet() or
process_event(), you should definitely want to use this
instead of getattr(self, 'my_method')()

		
BaseNamespace.call_method(method_name, packet, *args)[source]

		This function is used to implement the two behaviors on dispatched
on_*() and recv_*() method calls.

Those are the two behaviors:

		If there is only one parameter on the dispatched method and
it is named packet, then pass in the packet dict as the
sole parameter.

		Otherwise, pass in the arguments as specified by the
different recv_*() methods args specs, or the
process_event() documentation.

This method will also consider the
exception_handler_decorator. See Namespace documentation
for details and examples.

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

main.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio

This module holds the main hooking function for your framework of choice.

Call the socketio_manage function from a view in your framework and this
will be the beginning of your Socket.IO journey.

		
socketio.socketio_manage(environ, namespaces, request=None, error_handler=None, json_loads=None, json_dumps=None)[source]

		Main SocketIO management function, call from within your Framework of
choice’s view.

The environ variable is the WSGI environ. It is used to extract
Socket object from the underlying server (as the ‘socketio’ key), and will
be attached to both the Socket and Namespace objects.

The namespaces parameter is a dictionary of the namespace string
representation as key, and the BaseNamespace namespace class descendant as
a value. The empty string (‘’) namespace is the global namespace. You can
use Socket.GLOBAL_NS to be more explicit. So it would look like:

namespaces={'': GlobalNamespace,
 '/chat': ChatNamespace}

The request object is not required, but will probably be useful to pass
framework-specific things into your Socket and Namespace functions. It will
simply be attached to the Socket and Namespace object (accessible through
self.request in both cases), and it is not accessed in any case by the
gevent-socketio library.

Pass in an error_handler if you want to override the default
error_handler (which is socketio.virtsocket.default_error_handler().
The callable you pass in should have the same signature as the default
error handler.

The json_loads and json_dumps are overrides for the default
json.loads and json.dumps function calls. Override these at
the top-most level here. This will affect all sockets created by this
socketio manager, and all namespaces inside.

This function will block the current “view” or “controller” in your
framework to do the recv/send on the socket, and dispatch incoming messages
to your namespaces.

This is a simple example using Pyramid:

def my_view(request):
 socketio_manage(request.environ, {'': GlobalNamespace}, request)

NOTE: You must understand that this function is going to be called
only once per socket opening, even though you are using a long
polling mechanism. The subsequent calls (for long polling) will
be hooked directly at the server-level, to interact with the
active Socket instance. This means you will not get access
to the future request or environ objects. This is of
particular importance regarding sessions (like Beaker). The
session will be opened once at the opening of the Socket, and not
closed until the socket is closed. You are responsible for
opening and closing the cookie-based session yourself if you want
to keep its data in sync with the rest of your GET/POST calls.

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

packet.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.packet

The day to day user doesn’t need to use this module directly.

The packets used internally (that might be exposed if you override the
process_packet() method of
your Namespace) are dictionaries, and are different from one message
type to another.

Internal packet types

Here is a list of message types available in the
Socket.IO protocol:

The connect packet

{"type": "connect",
 "qs": "",
 "endpoint": "/chat"}

The qs parameter is a query string you can add to the io.connect(‘/chat?a=b’); calls on the client side.

The message packet, equivalent to Socket.IO version 0.6’s string message:

{"type": "message",
 "data": "this is the sent string",
 "endpoint": "/chat"}

{"type": "message",
 "data": "some message, but please reply",
 "ack": True,
 "id": 5,
 "endpoint": "/chat"}

This last message includes a msg_id, and asks for an ack, which you can
reply to with self.ack(), so that the client-side callback is fired upon
reception.

The json packet

The json packet is like a message, with no name (unlike events) but with
structure JSON data attached. It is automatically decoded by gevent-socketio.

{"type": "json",
 "data": {"this": "is a json object"},
 "endpoint": "/chat"}

{"type": "json",
 "data": {"this": "is a json object", "please": "reply"},
 "ack": True,
 "id": 5,
 "endpoint": "/chat"}

The same ack mechanics also apply for the json packet.

The event packet

The event packet holds a name and some args as a list. They are
taken as a list on the browser side (you can socket.emit("event", many,
parameters) in the browser) and passed in as is.

{"type": "event",
 "endpoint": "/chat",
 "name": "my_event",
 "args": []}

{"type": "event",
 "endpoint": "/chat",
 "name": "my_event",
 "ack": True,
 "id": 123,
 "args": [{"my": "object"}, 2, "mystring"]}

The same ack semantics apply here as well.

[INSERT: mark the difference between when YOU create the packet, and when
you receive it, and what you must do with it according to different ack values]

The heartbeat packet

The heartbeat packet just marks the connection as alive for another amount
of time.

{"type": "heartbeat",
 "endpoint": ""}

This packet is for the global namespace (or empty namespace).

Ack mechanics

The client sends a message of the sort:

{"type": "message",
 "id": 140,
 "ack": True,
 "endpoint": "/tobi",
 "data": ''}

The ‘ack’ value is ‘true’, marking that we want an automatic ‘ack’ when it
receives the packet. The Node.js version sends the ack itself, without any
server-side code interaction. It dispatches the packet only after sending back
an ack, so the ack isn’t really a reply. It’s just marking the server received
it, but not if the event/message/json was properly processed.

The automated reply from such a request is:

{"type": "ack",
 "ackId": 140,
 "endpoint": '',
 "args": []}

Where ‘ackId’ corresponds to the ‘id’ of the originating message. Upon
reception of this ‘ack’ message, the client then looks in an object if there
is a callback function to call associated with this message id (140). If so,
runs it, otherwise, drops the packet.

There is a second way to ask for an ack, sending a packet like this:

{"type": "event",
 "id": 1,
 "ack": "data",
 "endpoint": '',
 "name": 'tobi',
 "args": []}

{"type": "json",
 "id": 1,
 "ack": "data",
 "endpoint": '',
 "data": {"a": "b"}}

and the same goes for a ‘message’ packet, which has the ‘ack’ equal to ‘data’.
When the server receives such a packet, it dispatches the corresponding event
(either the named event specified in an ‘event’ type packet, or ‘message’ or
‘json, if the type is so), and adds as a parameter, in addition to the
‘args’ passed by the event (or ‘data’ for ‘message’/’json’), the ack() function
to call (it encloses the packet ‘id’ already). Any number of arguments passed
to that ‘ack()’ function will be passed on to the client-side, and given as
parameter on the client-side function.

That is the returning ‘ack’ message, with the data ready to be passed as
arguments to the saved callback on the client side:

{"type": "ack",
 "ackId": 12,
 "endpoint": '',
 "args": ['woot', 'wa']}

To learn more, see the test_packet.py [https://github.com/abourget/gevent-socketio/blob/master/tests/test_packet.py] test cases. It also shows the serialization that happens on the wire.

Other module members

		
socketio.packet.decode(rawstr, json_loads=<function default_json_loads at 0x7f13b554d488>)[source]

		Decode a rawstr packet arriving from the socket into a dict.

		
socketio.packet.encode(data, json_dumps=<function default_json_dumps at 0x7f13b554d398>)[source]

		Encode an attribute dict into a byte string.

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio/transports.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.transports

import gevent
import urllib
import urlparse
from geventwebsocket import WebSocketError
from gevent.queue import Empty

[docs]class BaseTransport(object):
 """Base class for all transports. Mostly wraps handler class functions."""

 def __init__(self, handler, config, **kwargs):
 """Base transport class.

 :param config: dict Should contain the config keys, like
 ``heartbeat_interval``, ``heartbeat_timeout`` and
 ``close_timeout``.

 """
 self.content_type = ("Content-Type", "text/plain; charset=UTF-8")
 self.headers = [
 ("Access-Control-Allow-Origin", "*"),
 ("Access-Control-Allow-Credentials", "true"),
 ("Access-Control-Allow-Methods", "POST, GET, OPTIONS"),
 ("Access-Control-Max-Age", 3600),
]
 self.handler = handler
 self.config = config

[docs] def write(self, data=""):
 # Gevent v 0.13
 if hasattr(self.handler, 'response_headers_list'):
 if 'Content-Length' not in self.handler.response_headers_list:
 self.handler.response_headers.append(('Content-Length', len(data)))
 self.handler.response_headers_list.append('Content-Length')
 elif not hasattr(self.handler, 'provided_content_length') or self.handler.provided_content_length is None:
 # Gevent 1.0bX
 l = len(data)
 self.handler.provided_content_length = l
 self.handler.response_headers.append(('Content-Length', l))

 self.handler.write_smart(data)

[docs] def start_response(self, status, headers, **kwargs):
 if "Content-Type" not in [x[0] for x in headers]:
 headers.append(self.content_type)

 headers.extend(self.headers)
 self.handler.start_response(status, headers, **kwargs)

[docs]class XHRPollingTransport(BaseTransport):
 def __init__(self, *args, **kwargs):
 super(XHRPollingTransport, self).__init__(*args, **kwargs)

[docs] def options(self):
 self.start_response("200 OK", ())
 self.write()
 return []

[docs] def get(self, socket):
 socket.heartbeat()

 heartbeat_interval = self.config['heartbeat_interval']
 payload = self.get_messages_payload(socket, timeout=heartbeat_interval)
 if not payload:
 payload = "8::" # NOOP

 self.start_response("200 OK", [])
 self.write(payload)

 def _request_body(self):
 return self.handler.wsgi_input.readline()

[docs] def post(self, socket):
 for message in self.decode_payload(self._request_body()):
 socket.put_server_msg(message)

 self.start_response("200 OK", [
 ("Connection", "close"),
 ("Content-Type", "text/plain")
])
 self.write("1")

[docs] def get_messages_payload(self, socket, timeout=None):
 """This will fetch the messages from the Socket's queue, and if
 there are many messes, pack multiple messages in one payload and return
 """
 try:
 msgs = socket.get_multiple_client_msgs(timeout=timeout)
 data = self.encode_payload(msgs)
 except Empty:
 data = ""
 return data

[docs] def encode_payload(self, messages):
 """Encode list of messages. Expects messages to be unicode.

 ``messages`` - List of raw messages to encode, if necessary

 """
 if not messages or messages[0] is None:
 return ''

 if len(messages) == 1:
 return messages[0].encode('utf-8')

 payload = u''.join([(u'\ufffd%d\ufffd%s' % (len(p), p))
 for p in messages if p is not None])
 # FIXME: why is it so that we must filter None from here ? How
 # is it even possible that a None gets in there ?

 return payload.encode('utf-8')

[docs] def decode_payload(self, payload):
 """This function can extract multiple messages from one HTTP payload.
 Some times, the XHR/JSONP/.. transports can pack more than one message
 on a single packet. They are encoding following the WebSocket
 semantics, which need to be reproduced here to unwrap the messages.

 The semantics are:

 \ufffd + [length as a string] + \ufffd + [payload as a unicode string]

 This function returns a list of messages, even though there is only
 one.

 Inspired by socket.io/lib/transports/http.js
 """
 payload = payload.decode('utf-8')
 if payload[0] == u"\ufffd":
 ret = []
 while len(payload) != 0:
 len_end = payload.find(u"\ufffd", 1)
 length = int(payload[1:len_end])
 msg_start = len_end + 1
 msg_end = length + msg_start
 message = payload[msg_start:msg_end]
 ret.append(message)
 payload = payload[msg_end:]
 return ret
 return [payload]

[docs] def do_exchange(self, socket, request_method):
 if not socket.connection_established:
 # Runs only the first time we get a Socket opening
 self.start_response("200 OK", [
 ("Connection", "close"),
])
 self.write("1::") # 'connect' packet
 return
 elif request_method in ("GET", "POST", "OPTIONS"):
 return getattr(self, request_method.lower())(socket)
 else:
 raise Exception("No support for the method: " + request_method)

[docs]class JSONPolling(XHRPollingTransport):
 def __init__(self, handler, config):
 super(JSONPolling, self).__init__(handler, config)
 self.content_type = ("Content-Type", "text/javascript; charset=UTF-8")

 def _request_body(self):
 data = super(JSONPolling, self)._request_body()
 # resolve %20%3F's, take out wrapping d="...", etc..
 data = urllib.unquote_plus(data)[3:-1] \
 .replace(r'\"', '"') \
 .replace(r"\\", "\\")

 # For some reason, in case of multiple messages passed in one
 # query, IE7 sends it escaped, not utf-8 encoded. This dirty
 # hack handled it
 if data[0] == "\\":
 data = data.decode("unicode_escape").encode("utf-8")
 return data

[docs] def write(self, data):
 """Just quote out stuff before sending it out"""
 args = urlparse.parse_qs(self.handler.environ.get("QUERY_STRING"))
 if "i" in args:
 i = args["i"]
 else:
 i = "0"
 # TODO: don't we need to quote this data in here ?
 super(JSONPolling, self).write("io.j[%s]('%s');" % (i, data))

[docs]class XHRMultipartTransport(XHRPollingTransport):
 def __init__(self, handler):
 super(JSONPolling, self).__init__(handler)
 self.content_type = (
 "Content-Type",
 "multipart/x-mixed-replace;boundary=\"socketio\""
)

[docs] def do_exchange(self, socket, request_method):
 if request_method == "GET":
 return self.get(socket)
 elif request_method == "POST":
 return self.post(socket)
 else:
 raise Exception("No support for such method: " + request_method)

[docs] def get(self, socket):
 header = "Content-Type: text/plain; charset=UTF-8\r\n\r\n"

 self.start_response("200 OK", [("Connection", "keep-alive")])
 self.write_multipart("--socketio\r\n")
 self.write_multipart(header)
 self.write_multipart(str(socket.sessid) + "\r\n")
 self.write_multipart("--socketio\r\n")

 def chunk():
 while True:
 payload = self.get_messages_payload(socket)

 if not payload:
 # That would mean the call to Queue.get() returned Empty,
 # so it was in fact killed, since we pass no timeout=..
 return
 # See below
 else:
 try:
 self.write_multipart(header)
 self.write_multipart(payload)
 self.write_multipart("--socketio\r\n")
 except socket.error:
 # The client might try to reconnect, even with a socket
 # error, so let's just let it go, and not kill the
 # socket completely. Other processes will ensure
 # we kill everything if the user expires the timeouts.
 #
 # WARN: this means that this payload is LOST, unless we
 # decide to re-inject it into the queue.
 return

 socket.spawn(chunk)

[docs]class WebsocketTransport(BaseTransport):
[docs] def do_exchange(self, socket, request_method):
 websocket = self.handler.environ['wsgi.websocket']
 websocket.send("1::") # 'connect' packet

 def send_into_ws():
 while True:
 message = socket.get_client_msg()

 if message is None:
 break
 try:
 websocket.send(message)
 except (WebSocketError, TypeError):
 # We can't send a message on the socket
 # it is dead, let the other sockets know
 socket.disconnect()

 def read_from_ws():
 while True:
 message = websocket.receive()

 if message is None:
 break
 else:
 if message is not None:
 socket.put_server_msg(message)

 socket.spawn(send_into_ws)
 socket.spawn(read_from_ws)

[docs]class FlashSocketTransport(WebsocketTransport):
 pass

[docs]class HTMLFileTransport(XHRPollingTransport):
 """Not tested at all!"""

 def __init__(self, handler, config):
 super(HTMLFileTransport, self).__init__(handler, config)
 self.content_type = ("Content-Type", "text/html")

[docs] def write_packed(self, data):
 self.write("<script>_('%s');</script>" % data)

[docs] def write(self, data):
 l = 1024 * 5
 super(HTMLFileTransport, self).write("%d\r\n%s%s\r\n" % (l, data, " " * (l - len(data))))

[docs] def do_exchange(self, socket, request_method):
 return super(HTMLFileTransport, self).do_exchange(socket, request_method)

[docs] def get(self, socket):
 self.start_response("200 OK", [
 ("Connection", "keep-alive"),
 ("Content-Type", "text/html"),
 ("Transfer-Encoding", "chunked"),
])
 self.write("<html><body><script>var _ = function (msg) { parent.s._(msg, document); };</script>")
 self.write_packed("1::") # 'connect' packet

 def chunk():
 while True:
 payload = self.get_messages_payload(socket)

 if not payload:
 # That would mean the call to Queue.get() returned Empty,
 # so it was in fact killed, since we pass no timeout=..
 return
 else:
 try:
 self.write_packed(payload)
 except socket.error:
 # See comments for XHRMultipart
 return

 socket.spawn(chunk)

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

server.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.server

This is the component used to hook Gevent and its WSGI server to
the WSGI app to be served, while dispatching any Socket.IO related
activities to the handler and the transports.

		
class socketio.server.SocketIOServer(*args, **kwargs)[source]

		Bases: gevent.pywsgi.WSGIServer

A WSGI Server with a resource that acts like an SocketIO.

		
__init__(*args, **kwargs)[source]

		This is just like the standard WSGIServer __init__, except with a
few additional kwargs:

		Parameters:		
		resource – The URL which has to be identified as a
socket.io request. Defaults to the /socket.io/ URL.

		transports – Optional list of transports to allow. List of
strings, each string should be one of
handler.SocketIOHandler.handler_types.

		policy_server – Boolean describing whether or not to use the
Flash policy server. Default True.

		policy_listener – A tuple containing (host, port) for the
policy server. This is optional and used only if policy server
is set to true. The default value is 0.0.0.0:843

		heartbeat_interval – int The timeout for the server, we
should receive a heartbeat from the client within this
interval. This should be less than the
heartbeat_timeout.

		heartbeat_timeout – int The timeout for the client when
it should send a new heartbeat to the server. This value
is sent to the client after a successful handshake.

		close_timeout – int The timeout for the client, when it
closes the connection it still X amounts of seconds to do
re open of the connection. This value is sent to the
client after a successful handshake.

		log_file – str The file in which you want the PyWSGI
server to write its access log. If not specified, it
is sent to stderr (with gevent 0.13).

		
get_socket(sessid='')[source]

		Return an existing or new client Socket.

		
handle(socket, address)[source]

		

		
start_accepting()[source]

		

		
stop(timeout=None)[source]

		

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

sgunicorn.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

socketio.sgunicorn

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_modules/socketio/handler.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 		Module code »

 		socketio »

 Source code for socketio.handler

import sys
import re
import gevent
import urlparse

from gevent.pywsgi import WSGIHandler
from socketio import transports

[docs]class SocketIOHandler(WSGIHandler):
 RE_REQUEST_URL = re.compile(r"""
 ^/(?P<resource>.+?)
 /1
 /(?P<transport_id>[^/]+)
 /(?P<sessid>[^/]+)/?$
 """, re.X)
 RE_HANDSHAKE_URL = re.compile(r"^/(?P<resource>.+?)/1/$", re.X)
 # new socket.io versions (> 0.9.8) call an obscure url with two slashes
 # instead of a transport when disconnecting
 # https://github.com/LearnBoost/socket.io-client/blob/0.9.16/lib/socket.js#L361
 RE_DISCONNECT_URL = re.compile(r"""
 ^/(?P<resource>.+?)
 /(?P<protocol_version>[^/]+)
 //(?P<sessid>[^/]+)/?$
 """, re.X)

 handler_types = {
 'websocket': transports.WebsocketTransport,
 'flashsocket': transports.FlashSocketTransport,
 'htmlfile': transports.HTMLFileTransport,
 'xhr-multipart': transports.XHRMultipartTransport,
 'xhr-polling': transports.XHRPollingTransport,
 'jsonp-polling': transports.JSONPolling,
 }

 def __init__(self, config, *args, **kwargs):
 """Create a new SocketIOHandler.

 :param config: dict Configuration for timeouts and intervals
 that will go down to the other components, transports, etc..

 """
 self.socketio_connection = False
 self.allowed_paths = None
 self.config = config

 super(SocketIOHandler, self).__init__(*args, **kwargs)

 self.transports = self.handler_types.keys()
 if self.server.transports:
 self.transports = self.server.transports
 if not set(self.transports).issubset(set(self.handler_types)):
 raise ValueError("transports should be elements of: %s" %
 (self.handler_types.keys()))

 def _do_handshake(self, tokens):
 if tokens["resource"] != self.server.resource:
 self.log_error("socket.io URL mismatch")
 else:
 socket = self.server.get_socket()
 data = "%s:%s:%s:%s" % (socket.sessid,
 self.config['heartbeat_timeout'] or '',
 self.config['close_timeout'] or '',
 ",".join(self.transports))
 self.write_smart(data)

[docs] def write_jsonp_result(self, data, wrapper="0"):
 self.start_response("200 OK", [
 ("Content-Type", "application/javascript"),
])
 self.result = ['io.j[%s]("%s");' % (wrapper, data)]

[docs] def write_plain_result(self, data):
 self.start_response("200 OK", [
 ("Access-Control-Allow-Origin", self.environ.get('HTTP_ORIGIN', '*')),
 ("Access-Control-Allow-Credentials", "true"),
 ("Access-Control-Allow-Methods", "POST, GET, OPTIONS"),
 ("Access-Control-Max-Age", 3600),
 ("Content-Type", "text/plain"),
])
 self.result = [data]

[docs] def write_smart(self, data):
 args = urlparse.parse_qs(self.environ.get("QUERY_STRING"))

 if "jsonp" in args:
 self.write_jsonp_result(data, args["jsonp"][0])
 else:
 self.write_plain_result(data)

 self.process_result()

[docs] def handle_one_response(self):
 """This function deals with *ONE INCOMING REQUEST* from the web.

 It will wire and exchange message to the queues for long-polling
 methods, otherwise, will stay alive for websockets.

 """
 path = self.environ.get('PATH_INFO')

 # Kick non-socket.io requests to our superclass
 if not path.lstrip('/').startswith(self.server.resource + '/'):
 return super(SocketIOHandler, self).handle_one_response()

 self.status = None
 self.headers_sent = False
 self.result = None
 self.response_length = 0
 self.response_use_chunked = False

 # This is analyzed for each and every HTTP requests involved
 # in the Socket.IO protocol, whether long-running or long-polling
 # (read: websocket or xhr-polling methods)
 request_method = self.environ.get("REQUEST_METHOD")
 request_tokens = self.RE_REQUEST_URL.match(path)
 handshake_tokens = self.RE_HANDSHAKE_URL.match(path)
 disconnect_tokens = self.RE_DISCONNECT_URL.match(path)

 if handshake_tokens:
 # Deal with first handshake here, create the Socket and push
 # the config up.
 return self._do_handshake(handshake_tokens.groupdict())
 elif disconnect_tokens:
 # it's a disconnect request via XHR
 tokens = disconnect_tokens.groupdict()
 elif request_tokens:
 tokens = request_tokens.groupdict()
 # and continue...
 else:
 # This is no socket.io request. Let the WSGI app handle it.
 return super(SocketIOHandler, self).handle_one_response()

 # Setup socket
 sessid = tokens["sessid"]
 socket = self.server.get_socket(sessid)
 if not socket:
 self.handle_bad_request()
 return [] # Do not say the session is not found, just bad request
 # so they don't start brute forcing to find open sessions

 if self.environ['QUERY_STRING'].startswith('disconnect'):
 # according to socket.io specs disconnect requests
 # have a `disconnect` query string
 # https://github.com/LearnBoost/socket.io-spec#forced-socket-disconnection
 socket.disconnect()
 self.handle_disconnect_request()
 return []

 # Setup transport
 transport = self.handler_types.get(tokens["transport_id"])

 # In case this is WebSocket request, switch to the WebSocketHandler
 # FIXME: fix this ugly class change
 old_class = None
 if issubclass(transport, (transports.WebsocketTransport,
 transports.FlashSocketTransport)):
 old_class = self.__class__
 self.__class__ = self.server.ws_handler_class
 self.prevent_wsgi_call = True # thank you
 # TODO: any errors, treat them ??
 self.handle_one_response() # does the Websocket dance before we continue

 # Make the socket object available for WSGI apps
 self.environ['socketio'] = socket

 # Create a transport and handle the request likewise
 self.transport = transport(self, self.config)

 # transports register their own spawn'd jobs now
 self.transport.do_exchange(socket, request_method)

 if not socket.connection_established:
 # This is executed only on the *first* packet of the establishment
 # of the virtual Socket connection.
 socket.connection_established = True
 socket.state = socket.STATE_CONNECTED
 socket._spawn_heartbeat()
 socket._spawn_watcher()

 try:
 # We'll run the WSGI app if it wasn't already done.
 if socket.wsgi_app_greenlet is None:
 # TODO: why don't we spawn a call to handle_one_response here ?
 # why call directly the WSGI machinery ?
 start_response = lambda status, headers, exc=None: None
 socket.wsgi_app_greenlet = gevent.spawn(self.application,
 self.environ,
 start_response)
 except:
 self.handle_error(*sys.exc_info())

 # we need to keep the connection open if we are an open socket
 if tokens['transport_id'] in ['flashsocket', 'websocket']:
 # wait here for all jobs to finished, when they are done
 gevent.joinall(socket.jobs)

 # Switch back to the old class so references to this don't use the
 # incorrect class. Useful for debugging.
 if old_class:
 self.__class__ = old_class

 # Clean up circular references so they can be garbage collected.
 if hasattr(self, 'websocket') and self.websocket:
 if hasattr(self.websocket, 'environ'):
 del self.websocket.environ
 del self.websocket
 if self.environ:
 del self.environ

[docs] def handle_bad_request(self):
 self.close_connection = True
 self.start_response("400 Bad Request", [
 ('Content-Type', 'text/plain'),
 ('Connection', 'close'),
 ('Content-Length', 0)
])

[docs] def handle_disconnect_request(self):
 self.close_connection = True
 self.start_response("200 OK", [
 ('Content-Type', 'text/plain'),
 ('Connection', 'close'),
 ('Content-Length', 0)
])

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		gevent-socketio 0.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2015, Jeffrey Gelens, Alexandre Bourget, and John Anderson.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

